36 research outputs found

    Synergic effect of chronic hepatitis C infection and beta thalassemia major with marked hepatic iron overload on liver fibrosis: a retrospective cross-sectional study

    Get PDF
    BACKGROUND: Increased hepatic iron is assumed to potentiate progression towards liver fibrosis in chronic hepatitis C virus (HCV) infection. In this study we have evaluated the potentiating effect of marked hepatic iron overload and chronic HCV infection on hepatic fibrosis in thalassemic patients. METHODS: Liver biopsies of one group of patients with beta thalassemia major and chronic HCV infection (group 1) was compared with two groups of patients (groups 2&3) with either chronic HCV infection or thalassemia major, respectively (20 patients in each group). Necroinflammation, fibrosis, and iron overload were graded and compared. RESULTS: Stage of fibrosis in group 1 patients was significantly higher than the other two groups (p < 0.05). Necroinflammatory grade was significantly lower, but iron score was significantly higher in thalassemic patients (group 3) in comparison to groups 1 and 2 (p < 0.05). CONCLUSION: Our results indicate that marked liver iron overload and HCV infection in thalassemic patients have potentiating effect on hepatic fibrogenesis

    Pitfalls in machine learning‐based assessment of tumor‐infiltrating lymphocytes in breast cancer: a report of the international immuno‐oncology biomarker working group

    Get PDF
    The clinical significance of the tumor-immune interaction in breast cancer (BC) has been well established, and tumor-infiltrating lymphocytes (TILs) have emerged as a predictive and prognostic biomarker for patients with triple-negative (estrogen receptor, progesterone receptor, and HER2 negative) breast cancer (TNBC) and HER2-positive breast cancer. How computational assessment of TILs can complement manual TIL-assessment in trial- and daily practices is currently debated and still unclear. Recent efforts to use machine learning (ML) for the automated evaluation of TILs show promising results. We review state-of-the-art approaches and identify pitfalls and challenges by studying the root cause of ML discordances in comparison to manual TILs quantification. We categorize our findings into four main topics; (i) technical slide issues, (ii) ML and image analysis aspects, (iii) data challenges, and (iv) validation issues. The main reason for discordant assessments is the inclusion of false-positive areas or cells identified by performance on certain tissue patterns, or design choices in the computational implementation. To aid the adoption of ML in TILs assessment, we provide an in-depth discussion of ML and image analysis including validation issues that need to be considered before reliable computational reporting of TILs can be incorporated into the trial- and routine clinical management of patients with TNBC

    The tale of TILs in breast cancer : a report from the International Immuno-Oncology Biomarker Working Group

    Get PDF
    The advent of immune-checkpoint inhibitors (ICI) in modern oncology has significantly improved survival in several cancer settings. A subgroup of women with breast cancer (BC) has immunogenic infiltration of lymphocytes with expression of programmed deathligand 1 (PD-L1). These patients may potentially benefit from ICI targeting the programmed death 1 (PD-1)/PD-L1 signaling axis. The use of tumor-infiltrating lymphocytes (TILs) as predictive and prognostic biomarkers has been under intense examination. Emerging data suggest that TILs are associated with response to both cytotoxic treatments and immunotherapy, particularly for patients with triple-negative BC. In this review from The International Immuno-Oncology Biomarker Working Group, we discuss (a) the biological understanding of TILs, (b) their analytical and clinical validity and efforts toward the clinical utility in BC, and (c) the current status of PD-L1 and TIL testing across different continents, including experiences from low-to-middle-income countries, incorporating also the view of a patient advocate. This information will help set the stage for future approaches to optimize the understanding and clinical utilization of TIL analysis in patients with BC.The National Health and Medical Research Council of Australia; the Cure; the Royal Australasian College of Physicians; the NIH/NCI ; the National Breast Cancer Foundation of Australia Endowed Chair; the Breast Cancer Research Foundation, New York and the Breast Cancer Research Foundation (BCRF).www.nature.com/npjbcanceram2022Immunolog

    Image-based multiplex immune profiling of cancer tissues : translational implications. A report of the International Immuno-oncology Biomarker Working Group on Breast Cancer

    Get PDF
    Recent advances in the field of immuno-oncology have brought transformative changes in the management of cancer patients. The immune profile of tumours has been found to have key value in predicting disease prognosis and treatment response in various cancers. Multiplex immunohistochemistry and immunofluorescence have emerged as potent tools for the simultaneous detection of multiple protein biomarkers in a single tissue section, thereby expanding opportunities for molecular and immune profiling while preserving tissue samples. By establishing the phenotype of individual tumour cells when distributed within a mixed cell population, the identification of clinically relevant biomarkers with high-throughput multiplex immunophenotyping of tumour samples has great potential to guide appropriate treatment choices. Moreover, the emergence of novel multi-marker imaging approaches can now provide unprecedented insights into the tumour microenvironment, including the potential interplay between various cell types. However, there are significant challenges to widespread integration of these technologies in daily research and clinical practice. This review addresses the challenges and potential solutions within a structured framework of action from a regulatory and clinical trial perspective. New developments within the field of immunophenotyping using multiplexed tissue imaging platforms and associated digital pathology are also described, with a specific focus on translational implications across different subtypes of cancer.Gilead Breast Cancer Research Grant; Breast Cancer Research Foundation; Susan G Komen Leadership; Interne Fondsen KU Leuven/Internal Funds KU Leuven; Swedish Society for Medical Research; Swedish Breast Cancer Association; Cancer Research Program; US Department of Defense; Mayo Clinic Breast Cancer; Marie Sklodowska Curie; NHMRC; National Institutes of Health; Cancer Research UK; Japan Society for the Promotion of Science; Horizon 2020 European Union Research and Innovation Programme National Cancer Institute; National Heart, Lung and Blood Institute; National Institute of Biomedical Imaging and Bioengineering; VA Merit Review Award; US Department of Veterans Affairs Biomedical Laboratory Research Breast Cancer Research Program; Prostate Cancer Research Program; Lung Cancer Research Program; Kidney Precision Medicine Project (KPMP) Glue Grant; EPSRC; Melbourne Research Scholarship; Peter MacCallum Cancer Centre; KWF Kankerbestrijding; Dutch Ministry of Health, Welfare and Sport the Breast Cancer Research Foundation; Agence Nationale de la Recherche; Q-Life; National Breast Cancer Foundation of Australia; National Health and Medical Council of Australia; All-Island Cancer Research Institute; Irish Cancer Society; Science Foundation Ireland Investigator Programme; Science Foundation Ireland Strategic Partnership Programme. Open access funding provided by IReL.https://pathsocjournals.onlinelibrary.wiley.com/journal/10969896hj2024ImmunologySDG-03:Good heatlh and well-bein

    Spatial analyses of immune cell infiltration in cancer : current methods and future directions. A report of the International Immuno-Oncology Biomarker Working Group on Breast Cancer

    Get PDF
    Modern histologic imaging platforms coupled with machine learning methods have provided new opportunities to map the spatial distribution of immune cells in the tumor microenvironment. However, there exists no standardized method for describing or analyzing spatial immune cell data, and most reported spatial analyses are rudimentary. In this review, we provide an overview of two approaches for reporting and analyzing spatial data (raster versus vector-based). We then provide a compendium of spatial immune cell metrics that have been reported in the literature, summarizing prognostic associations in the context of a variety of cancers. We conclude by discussing two well-described clinical biomarkers, the breast cancer stromal tumor infiltrating lymphocytes score and the colon cancer Immunoscore, and describe investigative opportunities to improve clinical utility of these spatial biomarkers. © 2023 The Pathological Society of Great Britain and Ireland.http://www.thejournalofpathology.com/hj2024ImmunologySDG-03:Good heatlh and well-bein

    Image-based multiplex immune profiling of cancer tissues: translational implications. A report of the International Immuno-oncology Biomarker Working Group on Breast Cancer

    Get PDF
    Recent advances in the field of immuno-oncology have brought transformative changes in the management of cancer patients. The immune profile of tumours has been found to have key value in predicting disease prognosis and treatment response in various cancers. Multiplex immunohistochemistry and immunofluorescence have emerged as potent tools for the simultaneous detection of multiple protein biomarkers in a single tissue section, thereby expanding opportunities for molecular and immune profiling while preserving tissue samples. By establishing the phenotype of individual tumour cells when distributed within a mixed cell population, the identification of clinically relevant biomarkers with high-throughput multiplex immunophenotyping of tumour samples has great potential to guide appropriate treatment choices. Moreover, the emergence of novel multi-marker imaging approaches can now provide unprecedented insights into the tumour microenvironment, including the potential interplay between various cell types. However, there are significant challenges to widespread integration of these technologies in daily research and clinical practice. This review addresses the challenges and potential solutions within a structured framework of action from a regulatory and clinical trial perspective. New developments within the field of immunophenotyping using multiplexed tissue imaging platforms and associated digital pathology are also described, with a specific focus on translational implications across different subtypes of cancer

    Pitfalls in machine learning-based assessment of tumor-infiltrating lymphocytes in breast cancer: A report of the International Immuno-Oncology Biomarker Working Group on Breast Cancer

    Get PDF
    The clinical significance of the tumor-immune interaction in breast cancer is now established, and tumor-infiltrating lymphocytes (TILs) have emerged as predictive and prognostic biomarkers for patients with triple-negative (estrogen receptor, progesterone receptor, and HER2-negative) breast cancer and HER2-positive breast cancer. How computational assessments of TILs might complement manual TIL assessment in trial and daily practices is currently debated. Recent efforts to use machine learning (ML) to automatically evaluate TILs have shown promising results. We review state-of-the-art approaches and identify pitfalls and challenges of automated TIL evaluation by studying the root cause of ML discordances in comparison to manual TIL quantification. We categorize our findings into four main topics: (1) technical slide issues, (2) ML and image analysis aspects, (3) data challenges, and (4) validation issues. The main reason for discordant assessments is the inclusion of false-positive areas or cells identified by performance on certain tissue patterns or design choices in the computational implementation. To aid the adoption of ML for TIL assessment, we provide an in-depth discussion of ML and image analysis, including validation issues that need to be considered before reliable computational reporting of TILs can be incorporated into the trial and routine clinical management of patients with triple-negative breast cancer
    corecore