25 research outputs found

    Inter-element fractionation of highly siderophile elements in the Tonga Arc due to flux melting of a depleted source

    Get PDF
    Highly siderophile element concentrations (HSEs: Os, Ir, Ru, Pt, Pd, and Re) have been determined for a suite of fresh, submarine mafic lavas from the northern Tonga Arc front and the nascent backarc Fonualei Spreading Centre (FSC). Prior melt depletion of the Tongan mantle wedge combined with a high degree of fluid fluxed melting is thought to have produced boninitic magmas at several arc and FSC locations. As such, this arc system provides an opportunity to assess the fluid mobility of HSEs and to investigate the effects of fluid-induced melting and prior melt depletion on HSE behaviour during both mantle melting and magma evolution. Tongan lavas display extreme enrichment of Pt (2.5–32 ng/g) and Pd over Os (0.002–0.6 ng/g), Ir, and Ru, significantly greater than basalts from mid-ocean ridges. Magma evolution increases the degree of fractionation, resulting in the highest recorded Pt/Ru ratios (>300) in arc front samples with MgO <8 wt.%. This increasing fractionation is due to the mild incompatibility of Pt and Pd, and concurrent compatibility of Ru, during sulphide undersaturated magma evolution. However, the fractionation of Pt and Pd from Os, Ir, and Ru is observed in the highest MgO samples, indicating source inheritance. Prior melt depletion of the mantle and elevated oxygen fugacity both increase the likelihood of complete consumption of sulphide in the source during melting, which typically leads to melts with high concentrations of all the HSE. Indeed, modelling indicates that 25% aggregate partial melting of a depleted MORB-mantle source, proposed for the Tonga Arc, will lead to complete base-metal sulphide consumption unless there is considerable addition of S by the slab flux (at least 200 μg/g). Although source enrichment of Pt, Pd, and Re by slab fluids may take place, the fractionation of Pt and Pd from Os, Ir, and Ru can largely be explained by relatively low-temperature, yet high-degree, melting of fluid-fluxed melt-depleted mantle. The high Pt and Pd contents can be produced by the exhaustion of sulphide in the source, while the presence of Ru–Os–(Ir) alloys or sulphides (e.g. laurite) associated with Cr-spinel can explain Os, Ir, and Ru retention in the source residue. Such phases have been documented in fluid-fluxed sub-arc mantle from ophiolites. Osmium isotopes co-vary negatively with Os abundance and thus appear to be dominated by shallow level contamination. The most Os-rich samples, however, have 187Os/188Os ratios (0.126–0.132) which are typical of DMM and MORB, suggesting an indistinguishable flux of radiogenic Os from the slab. The significant fractionation of Pt and Re from Os in arc settings will lead, over time, to elevated 186Os and 187Os which may be relevant to the observed enrichments of these isotopes in some mantle regions. In addition, the differing behaviour of Ru and Ir, and the implication of a mantle source containing Ru-rich microphases, may have consequences for the estimation of the HSE composition of primitive upper mantle

    Silica-rich spinel harzburgite residues formed by fractional hybridization-melting of the intra-oceanic supra-subduction zone mantle: New evidence from TUBAF seamount peridotites

    Get PDF
    Recent studies of serpentine-free, spinel peridotite xenoliths from the mantle lithosphere beneath the active Kamchatka and West Bismarck arcs have shown that these rocks are enriched in silica and highly depleted in incompatible elements in comparison with melting residues of either primitive or mid-ocean ridge mantle. It has been suggested that the silica-rich nature of peridotites from the intra-oceanic, fore- and sub-arc mantle lithosphere, collectively referred to as ‘Supra-Subduction Zone (SSZ) peridotites’, is primarily of residual origin and inherited from source processes during partial melting in the SSZ mantle asthenosphere (mantle wedge). However, quantifying the contribution of post-melting processes to the silica-rich nature of SSZ peridotites has remained challenging. Here we report petrological and major and trace element data for a new suite of spinel harzburgite xenoliths from the mantle lithosphere beneath TUBAF seamount, located in the fore-arc region of New Ireland (Papua New Guinea area). All samples are fresh peridotites displaying coarse-grained protogranular textures, and sometimes high orthopyroxene (up to ∼29 wt%) at low clinopyroxene (≤4 wt%) contents, which are typical for SSZ peridotites worldwide. TUBAF peridotites in this study have suffered very little post-melting metasomatism through the formation of ≤1 wt% amphibole, which subsequently experienced decompression-induced breakdown during the xenolith ascent. Otherwise, the rocks display a high degree of inter-mineral equilibration and melting signatures preserved through sub-solidus re-equilibration. The bulk-rock chemistry of TUBAF peridotites record a Fe-Al correlation along the 25–30% melting isopleths from ∼2 to &lt;1 GPa, in combination with the distinctive enrichment in silica and (TiO2, Al2O3, Na2O)-depletion of SSZ peridotites. This strongly supports the melting origin of these ‘residual SSZ signatures’. Bulk-rock and mineral lithophile trace element compositions of TUBAF xenoliths are similar to those of other residual SSZ peridotites, consistent with 25–30% of nearly-pure fractional melt extraction (critical mass porosity &lt;0.001%) in the presence of a fluxing agent enriched in highly incompatible elements. We re-assess earlier interpretations of the origins of TUBAF peridotites by melting at mid-ocean ridges. Instead, we show that these rocks have experienced their last melting event in the mantle wedge, similar to samples from the Izu-Bonin-Mariana fore-arc and the Kamchatka and West Bismarck arcs. We also demonstrate that post-melting metasomatism (including fibrous orthopyroxene that are absent from the samples in this study) is unrelated to the residual SSZ mantle signatures, for which we present the results of polybaric and isothermal flux-melting models including minor element partitioning parameterizations. These models imply that residual SSZ signatures form when previously depleted mantle protoliths are hybridized by hydrous, silica-rich liquids. From the unique Fe-Al correlation in TUBAF peridotites and their low temperatures of equilibration, it appears that fractional hybridization-melting processes forming these rocks occurred in a fore-arc environment with shallow mantle decompression, likely during Oligocene to Miocene subduction along the Manus-Kilinailau trench

    Oxidising agents in sub-arc mantle melts link slab devolatilisation and arc magmas.

    Get PDF
    Subduction zone magmas are more oxidised on eruption than those at mid-ocean ridges. This is attributed either to oxidising components, derived from subducted lithosphere (slab) and added to the mantle wedge, or to oxidation processes occurring during magma ascent via differentiation. Here we provide direct evidence for contributions of oxidising slab agents to melts trapped in the sub-arc mantle. Measurements of sulfur (S) valence state in sub-arc mantle peridotites identify sulfate, both as crystalline anhydrite (CaSO &lt;sub&gt;4&lt;/sub&gt; ) and dissolved SO &lt;sub&gt;4&lt;/sub&gt; &lt;sup&gt;2-&lt;/sup&gt; in spinel-hosted glass (formerly melt) inclusions. Copper-rich sulfide precipitates in the inclusions and increased Fe &lt;sup&gt;3+&lt;/sup&gt; /∑Fe in spinel record a S &lt;sup&gt;6+&lt;/sup&gt; -Fe &lt;sup&gt;2+&lt;/sup&gt; redox coupling during melt percolation through the sub-arc mantle. Sulfate-rich glass inclusions exhibit high U/Th, Pb/Ce, Sr/Nd and δ &lt;sup&gt;34&lt;/sup&gt; S (+ 7 to + 11‰), indicating the involvement of dehydration products of serpentinised slab rocks in their parental melt sources. These observations provide a link between liberated slab components and oxidised arc magmas

    Depositional setting, provenance and tectonic-volcanic setting of Eocene-Recent deep-sea sediments of the oceanic Izu-Bonin forearc, NW Pacific (IODP Expedition 352)

    Get PDF
    New biostratigraphical, geochemical, and magnetic evidence is synthesized with IODP Expedition 352 shipboard results to understand the sedimentary and tectono-magmatic development of the Izu–Bonin outer forearc region. The oceanic basement of the Izu–Bonin forearc was created by supra-subduction zone seafloor spreading during early Eocene (c. 50–51 Ma). Seafloor spreading created an irregular seafloor topography on which talus locally accumulated. Oxide-rich sediments accumulated above the igneous basement by mixing of hydrothermal and pelagic sediment. Basaltic volcanism was followed by a hiatus of up to 15 million years as a result of topographic isolation or sediment bypassing. Variably tuffaceous deep-sea sediments were deposited during Oligocene to early Miocene and from mid-Miocene to Pleistocene. The sediments ponded into extensional fault-controlled basins, whereas condensed sediments accumulated on a local basement high. Oligocene nannofossil ooze accumulated together with felsic tuff that was mainly derived from the nearby Izu–Bonin arc. Accumulation of radiolarian-bearing mud, silty clay, and hydrogenous metal oxides beneath the carbonate compensation depth (CCD) characterized the early Miocene, followed by middle Miocene–Pleistocene increased carbonate preservation, deepened CCD and tephra input from both the oceanic Izu–Bonin arc and the continental margin Honshu arc. The Izu–Bonin forearc basement formed in a near-equatorial setting, with late Mesozoic arc remnants to the west. Subduction-initiation magmatism is likely to have taken place near a pre-existing continent–oceanic crust boundary. The Izu–Bonin arc migrated northward and clockwise to collide with Honshu by early Miocene, strongly influencing regional sedimentation

    Peridotite xenoliths from Grenada, Lesser Antilles Island Arc

    No full text
    Ultramafic xenoliths comprising harzburgite, lherzolite (reacted harzburgite) and spinel-rich dunite, occur in alkali olivine basalts (M series) of Grenada in the Lesser Antilles island arc. Textures are protogranular, porphyroclastic and granular; the latter are restricted to dunites and areas of the harzburgites/lherzolites where interaction with host magma has occurred. Primary mineralogy comprises olivine, orthopyroxene, clinopyroxene, and spinel. Harzburgites are residual from a fractional partial melting event totaling ~22%. Infiltration of harzburgite by (and reaction with) basalt has produced: a wehrlite, with partial dissolution of primary spinel, an increase in the oxygen fugacity (ƒO2) from primary values 1–2 log ƒO2 units above the fayalite-magnetite-quartz (FMQ) buffer, to 2–2.5 log units above the buffer; reaction of orthopyroxene to form patches of intergrown olivine and clinopyroxene, and bronzite andesite glass (60 wt%, SiO2 18–20 wt% Al2O3 and 3–4 wt% Na2O) with flat to light rare earth element-depleted, chondrite-normalized abundances. Refertilisation of the mantle by reacting melts, producing a clinopyroxene-rich lithology, may form a source of ankaramitic (high-Ca) arc basalts

    Geochemical window into subduction and accretion processes : Raspas metamorphic complex, Ecuador

    No full text
    The high-pressure, low-temperature (P = 1.3-2 GPa ; T is less than or equal to 600°C) Raspas metamorphic complex is an exhumed fragement of the partially accreted, partially subducted Amotape-Chaucha terrane in Southwest Ecuador. Comparative analysis of major and trace elements plus Sr, Nd, and Pb isotopes in bulk lithologies and individual crystalline phases shows that the complex includes one to three layers of ordinary oceanic crust and underlying mantle lithosphere together with oceanic plateau fragments. Subduction (and exhumation) of oceanic lithosphere resulted in selective bulk trace element geochemical changes : Rb, Ba, and Sr have been lost (in amounts from approximately 85%-50%) from the high-P, low-T metamorphosed pelites and basalts, whereas Pb is enriched in mafic rocks. During formation of the eclogite, U, Pb, and rare earth elements (REEs) were immobile. High-P, low-T metamorphosed terranes form the basement of active Ecuadorian arc volcanoes ; partial melting of this basement by mantle-wedge-derived basalt is a likely source of adakitic components. (Résumé d'auteur

    Oceanic intraplate volcanoes exposed: Example from seamounts accreted in Panama

    No full text
    Two Paleogene ocean islands are exposed in the Azuero Peninsula, west Panama, within sequences accreted in the early-Middle Eocene. A multidisciplinary approach involving litho-logic mapping, paleontological age determinations, and petrological study allows reconstruction of the stratigraphy and magmatic evolution of one of these intraplate oceanic volcanoes. From base to top, the volcano's structure comprises submarine basaltic lava flows locally interlayered with hemipelagic sediments, basaltic breccias, shallow-water limestones, and subaerial basaltic lava. Gabbros and basaltic dikes were emplaced along a rift zone of the island. Geochemical trends of basaltic lavas include decreased Mg# {[Mg/(Mg + Fe)] * 100} and, with time, increased incompatible element contents thought to be representative of many poorly documented intraplate volcanoes in the Pacific. Our results show that, in addition to deep drilling, the roots of oceanic islands can be explored through studies of accreted and subaerially exhumed oceanic sequences
    corecore