742 research outputs found

    Explosive nucleosynthesis in core-collapse supernovae

    Get PDF
    The specific mechanism and astrophysical site for the production of half of the elements heavier than iron via rapid neutron capture (r-process) remains to be found. In order to reproduce the abundances of the solar system and of the old halo stars, at least two components are required: the heavy r-process nuclei (A>130) and the weak r-process which correspond to the lighter heavy nuclei (A<130). In this work, we present nucleosynthesis studies based on trajectories of hydrodynamical simulations for core-collapse supernovae and their subsequent neutrino-driven winds. We show that the weak r-process elements can be produced in neutrino-driven winds and we relate their abundances to the neutrino emission from the nascent neutron star. Based on the latest hydrodynamical simulations, heavy r-process elements cannot be synthesized in the neutrino-driven winds. However, by artificially increasing the wind entropy, elements up to A=195 can be made. In this way one can mimic the general behavior of an ejecta where the r-process occurs. We use this to study the impact of the nuclear physics input (nuclear masses, neutron capture cross sections, and beta-delayed neutron emission) and of the long-time dynamical evolution on the final abundances.Comment: 10 pages, 8 figures, invited talk, INPC 2010 Vancouver, Journal of Physics: Conference Serie

    On the Bahadur slope of the Lilliefors and the Cram\'{e}r--von Mises tests of normality

    Full text link
    We find the Bahadur slope of the Lilliefors and Cram\'{e}r--von Mises tests of normality.Comment: Published at http://dx.doi.org/10.1214/074921706000000851 in the IMS Lecture Notes Monograph Series (http://www.imstat.org/publications/lecnotes.htm) by the Institute of Mathematical Statistics (http://www.imstat.org

    Dynamical r-process studies within the neutrino-driven wind scenario and its sensitivity to the nuclear physics input

    Full text link
    We use results from long-time core-collapse supernovae simulations to investigate the impact of the late time evolution of the ejecta and of the nuclear physics input on the calculated r-process abundances. Based on the latest hydrodynamical simulations, heavy r-process elements cannot be synthesized in the neutrino-driven winds that follow the supernova explosion. However, by artificially increasing the wind entropy, elements up to A=195 can be made. In this way one can reproduce the typical behavior of high-entropy ejecta where the r-process is expected to occur. We identify which nuclear physics input is more important depending on the dynamical evolution of the ejecta. When the evolution proceeds at high temperatures (hot r-process), an (n,g)-(g,n) equilibrium is reached. While at low temperature (cold r-process) there is a competition between neutron captures and beta decays. In the first phase of the r-process, while enough neutrons are available, the most relevant nuclear physics input are the nuclear masses for the hot r-process and the neutron capture and beta-decay rates for the cold r-process. At the end of this phase, the abundances follow a steady beta flow for the hot r-process and a steady flow of neutron captures and beta decays for the cold r-process. After neutrons are almost exhausted, matter decays to stability and our results show that in both cases neutron captures are key for determining the final abundances, the position of the r-process peaks, and the formation of the rare-earth peak. In all the cases studied, we find that the freeze out occurs in a timescale of several seconds.Comment: 20 pages, 12 figures, submitted to Phys. Rev. C (improved version

    How many nucleosynthesis processes exist at low metallicity?

    Full text link
    Abundances of low-metallicity stars offer a unique opportunity to understand the contribution and conditions of the different processes that synthesize heavy elements. Many old, metal-poor stars show a robust abundance pattern for elements heavier than Ba, and a less robust pattern between Sr and Ag. Here we probe if two nucleosynthesis processes are sufficient to explain the stellar abundances at low metallicity, and we carry out a site independent approach to separate the contribution from these two processes or components to the total observationally derived abundances. Our approach provides a method to determine the contribution of each process to the production of elements such as Sr, Zr, Ba, and Eu. We explore the observed star-to-star abundance scatter as a function of metallicity that each process leads to. Moreover, we use the deduced abundance pattern of one of the nucleosynthesis components to constrain the astrophysical conditions of neutrino-driven winds from core-collapse supernovae.Comment: 13 pages, published in Ap

    Neutrino-driven wind and wind termination shock in supernova cores

    Get PDF
    The neutrino-driven wind from a nascent neutron star at the center of a supernova expands into the earlier ejecta of the explosion. Upon collision with this slower matter the wind material is decelerated in a wind termination shock. By means of hydrodynamic simulations in spherical symmetry we demonstrate that this can lead to a large increase of the wind entropy, density, and temperature, and to a strong deceleration of the wind expansion. The consequences of this phenomenon for the possible r-process nucleosynthesis in the late wind still need to be explored in detail. Two-dimensional models show that the wind-ejecta collision is highly anisotropic and could lead to a directional dependence of the nucleosynthesis even if the neutrino-driven wind itself is spherically symmetric.Comment: 6 pages, 3 figures, International Symposium on Nuclear Astrophysics - Nuclei in the Cosmos - IX, CERN, Geneva, Switzerland, 25-30 June, 200

    Impact of nuclear mass uncertainties on the rr-process

    Full text link
    Nuclear masses play a fundamental role in understanding how the heaviest elements in the Universe are created in the rr-process. We predict rr-process nucleosynthesis yields using neutron capture and photodissociation rates that are based on nuclear density functional theory. Using six Skyrme energy density functionals based on different optimization protocols, we determine for the first time systematic uncertainty bands -- related to mass modeling -- for rr-process abundances in realistic astrophysical scenarios. We find that features of the underlying microphysics make an imprint on abundances especially in the vicinity of neutron shell closures: abundance peaks and troughs are reflected in trends of neutron separation energy. Further advances in nuclear theory and experiments, when linked to observations, will help in the understanding of astrophysical conditions in extreme rr-process sites.Comment: 7 pages, 3 figure

    On the astrophysical robustness of neutron star merger r-process

    Full text link
    In this study we explore the nucleosynthesis in the dynamic ejecta of compact binary mergers. We are particularly interested in the question how sensitive the resulting abundance patterns are to the parameters of the merging system. Therefore, we systematically investigate combinations of neutron star masses in the range from 1.0 to 2.0 \Msun and, for completeness, we compare the results with those from two simulations of a neutron star black hole merger. The ejecta masses vary by a factor of five for the studied systems, but all amounts are (within the uncertainties of the merger rates) compatible with being a major source of cosmic r-process. The ejecta undergo a robust r-process nucleosynthesis which produces all the elements from the second to the third peak in close-to-solar ratios. Most strikingly, this r-process is extremely robust, all 23 investigated binary systems yield practically identical abundance patterns. This is mainly the result of the ejecta being extremely neutron rich (\ye ≈0.04\approx0.04) and the r-process path meandering along the neutron drip line so that the abundances are determined entirely by nuclear rather than by astrophysical properties. This robustness together with the ease with which both the second and third peak are reproduced make compact binary mergers the prime candidate for the source of the observed unique heavy r-process component.Comment: accepted for publication in MNRA
    • 

    corecore