174 research outputs found

    Jahn-Teller orbital glass state in the expanded fcc Cs3C60 fulleride

    Get PDF
    The most expanded fcc-structured alkali fulleride, Cs3C60, is a Mott insulator at ambient pressure because of the weak overlap between the frontier t1u molecular orbitals of the C603− anions. It has a severely disordered antiferromagnetic ground state that becomes a superconductor with a high critical temperature, Tc of 35 K upon compression. The effect of the localised t1u3 electronic configuration on the properties of the material is not well-understood. Here we study the relationship between the intrinsic crystallographic C603− orientational disorder and the molecular Jahn–Teller (JT) effect dynamics in the Mott insulating state. The high-resolution 13C magic-angle-spinning (MAS) NMR spectrum at room temperature comprises three peaks in the intensity ratio 1:2:2 consistent with the presence of three crystallographically-inequivalent carbon sites in the fcc unit cell and revealing that the JT-effect dynamics are fast on the NMR time-scale of 10−5 s despite the presence of the frozen-in C603− merohedral disorder disclosed by the 133Cs MAS NMR fine splitting of the tetrahedral and octahedral 133Cs resonances. Cooling to sub-liquid-nitrogen temperatures leads to severe broadening of both the 13C and 133Cs MAS NMR multiplets, which provides the signature of an increased number of inequivalent 13C and 133Cs sites. This is attributed to the freezing out of the C603− JT dynamics and the development of a t1u electronic orbital glass state guided by the merohedral disorder of the fcc structure. The observation of the dynamic and static JT effect in the Mott insulating state of the metrically cubic but merohedrally disordered Cs3C60 fulleride in different temperature ranges reveals the intimate relation between charge localization, magnetic ground state, lifting of electronic degeneracy, and orientational disorder in these strongly-correlated systems

    Magnetization plateau in the S=1/2 spin ladder with alternating rung exchange

    Get PDF
    We have studied the ground state phase diagram of a spin ladder with alternating rung exchange J⊥n=J⊥[1+(−1)nδ]J^{n}_{\perp} = J_{\perp}[1 + (-1)^{n} \delta ] in a magnetic filed, in the limit where the rung coupling is dominant. In this limit the model is mapped onto an XXZXXZ Heisenberg chain in a uniform and staggered longitudinal magnetic fields, where the amplitude of the staggered field is ∼δ\sim \delta. We have shown that the magnetization curve of the system exhibits a plateau at magnetization equal to the half of the saturation value. The width of a plateau scales as δν\delta^{\nu}, where ν=4/5\nu =4/5 in the case of ladder with isotropic antiferromagnetic legs and ν=2\nu =2 in the case of ladder with isotropic ferromagnetic legs. We have calculated four critical fields (Hc1±H^{\pm}_{c1} and Hc2±H^{\pm}_{c2}) corresponding to transitions between different magnetic phases of the system. We have shown that these transitions belong to the universality class of the commensurate-incommensurate transition.Comment: 6 pages, 2 figure

    Semiconductive and Photoconductive Properties of the Single Molecule Magnets Mn12_{12}-Acetate and Fe8_8Br8_8

    Full text link
    Resistivity measurements are reported for single crystals of Mn12_{12}-Acetate and Fe8_8Br8_8. Both materials exhibit a semiconductor-like, thermally activated behavior over the 200-300 K range. The activation energy, EaE_a, obtained for Mn12_{12}-Acetate was 0.37 ±\pm 0.05 eV, which is to be contrasted with the value of 0.55 eV deduced from the earlier reported absorption edge measurements and the range of 0.3-1 eV from intramolecular density of states calculations, assuming 2Ea2E_a= EgE_g, the optical band gap. For Fe8_8Br8_8, EaE_a was measured as 0.73 ±\pm 0.1 eV, and is discussed in light of the available approximate band structure calculations. Some plausible pathways are indicated based on the crystal structures of both lattices. For Mn12_{12}-Acetate, we also measured photoconductivity in the visible range; the conductivity increased by a factor of about eight on increasing the photon energy from 632.8 nm (red) to 488 nm (blue). X-ray irradiation increased the resistivity, but EaE_a was insensitive to exposure.Comment: 7 pages, 8 figure
    • …
    corecore