742 research outputs found

    Radiographic instrumentation for DPM experiments

    Get PDF
    New developments in x-ray radiography that may be applicable to containerless experimentation are presented. The two features discussed are the use of radiography to determine the position and shape of the solid-liquid interface and, with the aid of appropriate markers, the flow patterns in either the surface or bulk of the liquid state. Both surface energy and fluid viscosity measurements can be made with the aid of the described radiographic system

    Efficient micromirror confinement of sub-TeV cosmic rays in galaxy clusters

    Full text link
    Recent observations suggest a stronger confinement of cosmic rays (CRs) in certain astrophysical systems than predicted by current CR-transport theories. We posit that the incorporation of microscale physics into CR-transport models can account for this enhanced CR confinement. We develop a theoretical description of the effect of magnetic microscale fluctuations originating from the mirror instability on macroscopic CR diffusion. We confirm our theory with large-dynamical-range simulations of CR transport in the intracluster medium (ICM) of galaxy clusters and kinetic simulations of CR transport in micromirror fields. We conclude that sub-TeV CR confinement in the ICM is far more effective than previously anticipated on the basis of Galactic-transport extrapolations.Comment: Utilizes PIC and MHD simulations, complemented by deep learning for data analysis. Currently under journal review. Comments welcome

    Radial Velocity Studies of Close Binary Stars.XIII

    Full text link
    Radial-velocity measurements and sine-curve fits to the orbital radial velocity variations are presented for ten close binary systems: EG Cep,V1191 Cyg, V1003 Her, BD+7_3142, V357 Peg, V407 Peg, V1123 Tau, V1128 Tau, HH UMa, and PY Vir. While most of the studied eclipsing systems are contact binaries, EG Cep is a detached or a semi-detached double-lined binary and V1003 Her is a close binary of an uncertain type seen at a very low inclination angle. We discovered two previously unknown triple systems, BD+7_3142 and PY Vir, both with late spectral-type (K2V) binaries. Of interest is the low-mass ratio (q = 0.106) close binary V1191 Cyg showing an extremely fast period increase; the system has a very short period for its spectral type and shows a W-type light curve, a feature rather unexpected for such a low mass-ratio system.Comment: Accepted by AJ. 19 pages including 5 figure

    Data incongruence and the problem of avian louse phylogeny

    Get PDF
    Recent studies based on different types of data (i.e. morphological and molecular) have supported conflicting phylogenies for the genera of avian feather lice (Ischnocera: Phthiraptera). We analyse new and published data from morphology and from mitochondrial (12S rRNA and COI) and nuclear (EF1-) genes to explore the sources of this incongruence and explain these conflicts. Character convergence, multiple substitutions at high divergences, and ancient radiation over a short period of time have contributed to the problem of resolving louse phylogeny with the data currently available. We show that apparent incongruence between the molecular datasets is largely attributable to rate variation and nonstationarity of base composition. In contrast, highly significant character incongruence leads to topological incongruence between the molecular and morphological data. We consider ways in which biases in the sequence data could be misleading, using several maximum likelihood models and LogDet corrections. The hierarchical structure of the data is explored using likelihood mapping and SplitsTree methods. Ultimately, we concede there is strong discordance between the molecular and morphological data and apply the conditional combination approach in this case. We conclude that higher level phylogenetic relationships within avian Ischnocera remain extremely problematic. However, consensus between datasets is beginning to converge on a stable phylogeny for avian lice, at and below the familial rank

    The solvation and dissociation of 4-benzylaniline hydrochloride in chlorobenzene

    Get PDF
    A reaction scheme is proposed to account for the liberation of 4-benzylaniline from 4-benzylaniline hydrochloride, using chlorobenzene as a solvent at a temperature of 373 K. Two operational regimes are explored: “closed” reaction conditions correspond to the retention of evolved hydrogen chloride gas within the reaction medium, whereas an “open” system permits gaseous hydrogen chloride to be released from the reaction medium. The solution phase chemistry is analyzed by 1H NMR spectroscopy. Complete liberation of solvated 4-benzylaniline from solid 4-benzylaniline hydrochloride is possible under “open” conditions, with the entropically favored conversion of solvated hydrogen chloride to the gaseous phase thought to be the thermodynamic driver that effectively controls a series of interconnecting equilibria. A kinetic model is proposed to account for the observations of the open system
    corecore