

PUMP FAILURE AND THE APPR-1

By
J. Frank Coneybear Willard P. Berggren
Archie W. Culp, Jr.
Fred R. Grisak
Henry R. Kroeger

May 1956
Advanced Scientific Techniques Research Associates Milford, Connecticut

Technical Information Service Extension, Oak Ridge, Tenn.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

Other issues of this report may bear the number ASTRA-415-E-4-1.

LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:
A. Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission to the extent that such employee or contractor prepares, handles or distributes, or provides access to, any information pursuant to his employment or contract with the Commission.

This report has been reproduced directly from the best available copy.
Printed in USA, Price \$1.00. Available from the Office of Technical Services, Department of Commerce, Washington 25, D. C.

PUMP FAILURE

AND THE APPR-1

ASTRA

Milford, Connecticut

May, 1956

Work performed under Contract No. $\operatorname{AT}(11-1)-318$
For Alco Producte, Inc.
J. Frank Coneybear Willard P. Berggren Arcnie W. Culp Fred R. Grisak Henry R. Kroeger

CONTENTS

Page
I. SUMMARY 1
II. INTRODUCTION AND RESULTS 2
III. CONVECTION CIRCULATION 11
IV. QUASI-STEADY STATE 14
V. FLOW AFTER PUMP STOPS 20
VI. TRANSIENT CONDITIONS 25
VII. INSTANTANEOUS ZERO FLOW AT CONSTANT PONER 34

VIII. APPENDICES

Page
A. RECONCILIATION OF RELATIONSHIPS WITH ALCO - SPECIFIED INITIAL CONDITIONS 42
B. FRICTION HEAD LOSS vs FLOW 65
C. CONVECTION FLOW RELATIONSHIPS 71
D. STEAM GENERATOR RELATIONSHIPS FOR QUASI-STEADY STATE 87
E. DECREASE IN FLOW AFTER PUMP FAILURE 99
F. DERIVATIONS OF TRANSIENT APPROXIMATIONS 100
G. TRANSPORT LAGS 122
H. MAXIMUM TEMPERATURES 129
I. THE EFFECT OF TEMPERATURE ON PRESSURE DROP IN THE CORE 147
J. INSTANTANEOUS ZERO FLOW - STEADY POWER RELATIONSHIPS 151

LIST OF ILLUSTRATIONS

Sheet No.	Chapter or Appendix	Title	Page
1	III	Power and Temperature Diff. vs. Flow for Equilibrium Thermal Convection	13
2	IV	Locus of Points Determining the new Quasi-Steady State -- Power vs. Flow in Steam Generator	17
3	V	Coolant Flow After Pump Failure -- Flow vs. Time	24
4	VI	Power, Flow, and Temps:vs.: Time, Following the Pump Failure	33
5	VII	Fuel Temp vs. Time for No Heat Removal at Steady State Power	38
6	B	Friction Head Loss vs. Flow Rate for System Components	70
7	C	Simplified Piping Diagram for Determining Convection Driving Heads	73
8	C	Various Temperature and Density Profiles in the Steam Generator	75
9	C	Temperature Distribution in the Steam Generator for Steady-State Operation and During the Quasi-Steady State	86

Sheet No	Chapter or Appendix	Title	Page
10	F	Outlet Temp of Steam Generator vs. Time Following Pump Failure	116
11	F	Inlet Reactor Temp vs. Time Following Pump Failure	119
12	H	Determination of the Time of Maximum Temperatures	136
13	H	Peak Temperature Profiles in a Central Flow Channel	143
14	J	Center Fuel Temperature Rise vs. Time Following Pump Failure for Water Expelled and not Returned	176

I. SUMMARY
APAE-MEMO-87

The object of the work described in this report was to find out how soon, after failure of the primary coolant pump, the reactor needed to be scrammed. The reactor was assumed to be operating, initially, at full normal power. The results obtained indicate that the reactor need not be scrammed at all.

This applies for an indefinite period if the amount and pressure of the water on the secondary side of the heat exchanger remain essentially the same as before primary pump failure. It applies, in any case, for times on the order of minutes.

In attaining the results, primary flow momentum and freeconvention effects were investigated, as well as the interrelationship of temperature, reactivity, and power.
II. INTRODUCTION AND RESULTS
A. BACKGROUND, ADMINISTRATIVE

The work represented by this report was carried out for, and at the request of, Alco Products, Inc. The work is part of the overall effort leading towards the design, construction, and operation of the Army Package Power Reactor system, also known as the APPR-1.

Although the work described herein used the original Alco report, APAE-4, as the point of departure, it could not have been successfully carried out without the co-operation of, and the data from Messrs. William Richards and Joseph G. Gallagher of Alco.
B. BACKGROUND, TECHNICAL

In designing any type of equipment, it always is well to investigate what might happen in the event of a breakdown of a portion of the system. This is especially true with reactor powerplants because there is so little experience in their operation and because of the possibly more serious consequences of a breakdown or malfunction.

One of the possibilities to consider, in any reactor system which requires forced circulation, is the result of a failure of the pump providing that circulation. With this in mind the probable results of the failure of the primary coolant pump of the APPR-1 have been investigated. (The effect of starting the other pump was not included in this study.)

Some experimental results exist which indicate that excessive difficulties will not be encountered. These include tests on the LITR with no circulation, and include operating experience on the BSR at one megawatt. Nevertheless, these results are not completely and specifically applicable. Therefore, it was considered necessary to investigate possibilities analytically prior to actual operation.
C. METHOD OF ATtaCK

1. General Approach

The general approach taken in carrying out this work was to use conservative assumptions. This was done for the usual two reasons. First, as a matter of philosophy, it was done in order to make the safe assumption. Second, it was done to make computations simpler. This approach had the usual result that the system investigated is not exactly the real system, but a more conservative version of thet system.
2. The Three Situations Considered

The problem was attacked in three parts. The first answered the question of what the situation would be if the system passed safely through the transient conditions and arrived at some new steady state or quasi-steady state. The second part predicted the trends in reactor power and temperatures while passing through the transient stage. The third part considered what would happen with little or no heat removal.

3. Post-Transient Situation

If the transient phase can be passed through safely, a steady state situation will be reached.

By the definition of steady state, the heat must be removed from the reactor as fast as it is generated. This requires a matching of the primary coolant flow and the power level.

Heat must be removed from the heat exchanger at the same rate. This requires a matching of the primary coolant flow and the system temperatures.

Also, for steady reactor power, the reactivity must have returned to that zero value assumed to have existed just prior to pump failure. This fixes the system temperatures:

A combined graphical and analytical method of attack was found to be both easier and more readily understood. The above approach is discussed more completely in Chapter IV.
4. Transient Phase

In analyzing the transient phase, the most important component (insofar as possible damage is concerned) is the reactor. In carrying out the analyses, the values for the interrelated variables of temperature, reactivity, and power were obtained by numerical integration.

The transient phase can be considered as occurring in steps. In fact, for numerical integration, advantage can be taken of this step-wise method of attack.

The first step occurs during the transport lag period, after the pump failure and prior to the arrival at the reactor of lower temperature water. All of the numerical integration carried out was done within this step.

The second step occurs in a period during which the reactor inlet temperature is decreasing, due to the changing situation within the steam generator. (Since the rate of flow has decreased considerably by the time of the second step, its onset will not have an abrupt effect.)
5. A Third Situation

In addition to the analyses on the transient and post-transient situations, a third set of analyses were made. In these analyses two conditions of almost vanishingly small probability were studied.

The conditions were that the reactor power would be automatically and arbitrarily held at the normal operating level, despite the partial or complete absence of moderator. These analyses, although carrying assumptions to ridiculous extremes, give an ultimate conceivable situation.
D. RESULTS

1. General

As previously noted, the results reported here (and in greater detail elsewhere) are for a somewhat more conservative version of the actual reactor.

2. Transient Phase

It was found that both the flow and the power drop very sharply within the first few seconds. The time before the onset of net steam generation in the hottest channel was found to be about 7 seconds. The maximum metal temperature reached was $6.58^{\circ} \mathrm{F}$ which occurred after about 9 seconds. At about 11 seconds after pump failure, the temperatures began to decrease.

Because of the labor involved, numerical integration was not carried much beyond this point. However, it cannot be seen how any really fast increase in reactivity could occur between this maximum and the quasi-steady state.

It is true that the reactor inlet temperature (and ultimately the average reactor temperature) will finally decrease. However, the flow rate has decreased so much by then that it cannot cause any really fast drop in water temperature and rise in reactivity.

3. Post-Transient Situation

After the initial, relatively fast (times on the order of seconds) transients die away, a steady state or quasi-steady state is reached. This state is one in which primary circulation is maintained by natural themal convection.

Whether the primary loop situation, after the fast transients die away, is actually a steady state situation or a quasisteady state situation depends upon what happens in the secondary loop. If the amount and pressure of the water in the secondary side of the steam generator is held constant, then it is a true steady state.

If, as might normally occur, the situation on the secondary side changes (due to continuing operation at normal throttle, or to failure of the secondary coolant pump, or to some other cause), a quasi-steady state will be reached. The quasisteady state will approximate the previously mentioned steady state but will change slowly (compared to the previous changes) with changes in the secondary loop.

In the steady state or quasi-steady state which is reached, the power is about 43 per cent of normal operating power. The flow is down to about 11 per cent of normal; pump-driven flow. The maximum metal temperature is less than $640^{\circ} \mathrm{F}$. There is no net steam generation, although there is nucleate boiling.
(Although the above data were obtained with the assumption of scale present in steam generator, they apply to the no-scale situation within a few per cent.)
4. No Circulation and No Water

For the highly improbable situation of blocked circulation, with the water boiling away and not returning (no chugging or percolating), it was found that the plate with the highest power density would start to melt after a lapse of about 7 seconds.

For the almost impossible condition of steady full power with no heat removal at all, the plate with the highest power density would start to melt at the end of about 3 seconds.

5. Additional Results

In arriving at the results obtained for the transient and post-transient situations, considerable intermediate results were obtained in the way of flow nomertum, and free convection relationships, in addition to the relationships obtained for use in connection with the numerical integration.

III. CONVECTION CIRCULATION

A. GENERAL

The derivations for thermal siphoning will be found in Appendix C. While this analysis implicitly assumes no boiling, it should not be too inaccurate as long as there is not any net steam generation in the reactor as a whole. The reason is that a good part of the driving head, as well as most of the friction head, is found in parts of the loop outside the reactor.
B. RELATIONSHIPS

1. In turbulent flow only, that is down to
$F \quad=\quad 82.7 \mathrm{GPM} \quad(G=F / 4000=82.7 / 4000)$
$\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)=3790 \mathrm{G}^{1.8}$ Turbulent
kw $=2.06 \times 10^{6} G^{2.8}$
(See derivation, Appendix C)
2. For either turbulent or laminar flow

$$
\left(T_{2}-T_{1}\right)=164.5 \mathrm{H}
$$

and

$$
\mathrm{kw}=22.3 \mathrm{FH}
$$

C. CALCULATIONS

1. From the relations of item B-1 above, we calculate power level (kw) and loop $\Delta T=\left(T_{2}-T_{1}\right)$ as functions of primary loop F (GPM).
2. Tabulated Results of ΔT and $k w$ found as above are tabulated below:

F gpm	C($=\mathrm{F} / 4000$)	$G^{1.8}$	$\begin{gathered} \Delta T\left({ }^{\circ} \mathrm{F}\right) \\ 379 \mathrm{G}^{1.8} \end{gathered}$	$\mathrm{G}^{2.8}$	${ }^{\mathrm{kw}} 2.06 \times 10^{6} \mathrm{G}^{2.8}$
600	. 15	32.8×10^{-3}	124.4	49.2×10^{-4}	10100
400	. 10	15.9×10^{-3}	60.2	15.9×10^{-4}	3270
200	. 05	4.56×10^{-3}	17.3	2.28×10^{-4}	469
100	. 025	1.32×10^{-3}	5.0	. 327×10^{-4}	67.2

3. The above will be found plotted on Figure 1.

IV. QUASI-STEADY STATE
A. REQUIREMENTS
4. After the pump fails (and if the system passes through the transient stage without damage), it will eventually settle into a new steady state.
5. Actually we are not concerned with the final steady state. We are interested in a quasi-steady state, one in which the rates of change of the variables are slow compared to the rapid changes which the system underwent imediately after the pump failure. Thus we are talking about a state which does not vary greatly over a period of perhaps a.minute. We can ask, "What are the characteristics of such a state?"
6. Reactivity. If the control rods have not: been moved, the reactor must have returned to zero reactivity by itself. \cdots This. essentially means that the effective density must be the same as at the normal operating state, To a first approximation this means that the mean water temperature must be the same in the reactor as before.
7. Flow and Heat Removal. Assuming that the reactor is running at some power (and that the heat is being removed elsewhere), the flow must be adequate to remove the heat.

This is not difficult. If the temperatures reached are not destructive, the temperature difference $\left(T_{2}-T_{1}\right)$ will automatically increase until the thereby-induced thermal convection flow is adequate to prevent further increase. Flow and $\left(T_{2}-T_{1}\right)$ are in turn determined by the $k w$ of output power. Tais does not fix the steady state, however. As can be seen by the previously mentioned curve in Chapter III (Curve Sheet 1), there is a whole infinity of points at which power and flow are in equilibrium. And all of them could have the same mean temperature. There must be one additional requirement on : the flow.
5. Steam Generator. The additional requirement comes from the steam generator. The way this comes about requires some explanation. First the mean temperature (primary) of the steam generator (based on inlet and outlet temperatures) must be the same as for the reactor. (This is readily apparent since the inlet of one is the outlet of the other.)

Furthermore, the mean primary temperature mast be at the same value as for normal operating conditions, due to reactivity considerations. We also assume, for our quasi-steady state,
a constant temperature on the secondary side of the steam generator.

If we make the above assumptions, this fixes power vs. flow relationship. That is, if we assume a fixed pair of values for primary water mean temperature and secondary water saturation temperature, then for each value of power there is a particulsr value of flow required to maintain equilibrium.
6. All Requirements. Fortunately the curves of reactor flow requirements vs. power, and steam generator flow requirements vs. power, intersect. By so doing,they give the characteristics of a state which satisfies all requirements. See curves on next page.

$S_{\text {heet No }} 2$

B. CALCULATION

1. As far as the reactor is concerned, the calculations of thermal convection flow vs power have already been done. (See Chapter III.)
2. For the steam generator, what is desired is Flow or G vs kw at constant ΔT where ΔT represents the difference between the saturation temperature on the secondary side and the arithmetic mean of entrance and exit temperatures on the primary side. If effective temperature equalled arithmetic mean, the situation would be fairly simple since $h \sim G^{.8}, k$ for the metal is a constant and h for boiling is a known function of heat flow.
3. However, the effective mean is more nearly equal to log mean ΔT. Since the method of carrying out these calculations is not of particular importance here, the method and its derivation are included in Appendix D.
C. RESULTS
4. It will be noted that two curves are shown, one with scale and one without scale. The difference in initial conditions assumed is that with no scale the T_{g} on the secondary side of the steam generator is higher. All primary-side conditions are the same.
5. Knowing the flow, a value for ($\mathrm{T}_{2}-\mathrm{T}_{1}$) can be obtained from the convection flow curve in Chapter III.
6. Characteristics of the new quasi-steady state which results are tabulated below.

- 19 -

V. FLOW AFTER PUMP STOPS

A. GENERAL AND ASSUMPTIONS

1. In analyzing the situation after pump failure, one of the most important variables is the change in coolant flow with time.
2. The parameters which determine the rate of decrease of coolant flow are the kinetic energies stored in the coolant and in the pump (and drive mechanism) and the friction forces operating to absorb such kinetic energies.
3. A rough, quick calculation based on data supplied by Alco indicated that in the event of electrical power failure the kinetic energy stored in the pump and drive mechanism might contribute appreciably toward maintaining coolant flow. Therefore, it seemed more conservative to assume a type of failure (shaft breakage or seizure) in which the pump could not contribute toward maintaining flow. This was done.
4. It was felt that the friction head loss' due to a "frozen" or "floating" impeller would be small compared to the friction head loss due to the steam generator piping, so that the former loss was ignored.

B. RELATIONSHIPS

With the above simplifying assumptions, a very straightforward derivation was made of flow vs. time, as is shown in Appendix E. The result was

$$
G=\left(\frac{a}{a+t}\right)^{1.25}
$$

```
Where G = normalized flow or flow/initial flow
        (in this case F/4000)
    t = time in seconds
    a = a constant depending upon friction,
        velocity, and length characteristic of
        the primary loop (in this case a = 1.02 sec.)
```

(It is of interest to note that "a" is in the nature of a film drop "half life" since "h", film heat-transfer coefficient, depends upon $G^{.8}$ and $G^{.8}=1 / 2$ when $t=a$.)

C. RESULTS

1. Interrelationships of these variables for a few representative times are tabulated below, and are shown as a curve on the next page. For the pump failure problem, convection flow becomes important at flows greater than some of the latter values in the table. For such values of flow, the curve can be interpreted as being one in which the reactor has been partially or wholly shut down.
2. In case it becomes desirable to verify power and flow magnitudes in the interval $7<t<11 \mathrm{sec}$, where both coasting and convection are important, the following relationship will apply:
$168 \dot{G}+206 G^{1.8}-P / G=0$
3. For the situation as in $C-1$. a tabulation of G vs t follows:

$t(\mathrm{sec})$	$G^{0.8}$	G	$F(\mathrm{gpm})$
0.00	1.000	1.000	4000
0.10	0.911	0.888	3552
. 20	. 837	. 799	3196
. 30	. 773	. 724	2896
. 50	. 671	. 607	2428
0.75	. 577	. 503	2012
1.0	. 505	. 426	1704
1.5	. 405	. 321	1284
2.0	. 338	. 258	1032
3.0	. 254	. 181	724
4.0	. 203	. 136	544
5.0	. 169	. 109	436
6.0	. 145	. 091	364
7.0	0.127	0.076	304

VI. TRANSIENT CONDITIONS

A. GENERAL REMARKS ON METHOD

1. The essence of numerical methods such as are used here is that certain variables are held constant over a time interval which is sufficiently short that serious inaccuracies do not occur. This does not mean that all relationships must be linearized, nor that the values of variables which must be held constant over the time interval are always the initial values.
2. As an example of the former (linearization of all relationships), consider the reactor kinetics equations. If we linearize and use finite differences, we "build in" a mathematical (but not a physical) oscillation.
3. a. To show this we take the first few steps, hold the delayed neutron contribution constant at the initial value, and use the following relationship:

$$
P_{i+1}=P_{i}+\left[\frac{P_{i}}{l^{*}}\left(\Delta K_{i}-\beta\right)+\frac{P_{0} \beta}{l^{*}}\right] \Delta t_{i} \text {, where }
$$

$$
\begin{aligned}
& \frac{P_{0} \beta}{l^{*}}=D_{0}^{\lambda} \text { which becomes: } \\
& P_{i+1}=P_{i}+\left[\left(P_{i}\right)\left(\Delta K_{i}\right)+\left(P_{0}-P_{i}\right) \beta\right] \frac{\Delta t_{i}}{l^{*}}
\end{aligned}
$$

b. If we take the following values,

$$
\begin{aligned}
& P=\text { Power level, where } P_{0}=1 \\
& \ell^{\star}=\text { Generation Time } \\
& =0.2 \times 10^{-4} \mathrm{sec} \\
& B=\text { Fraction of Neutrons } \\
& \text { Produced Delayed } \\
& =75 \times 10^{-4} \\
& \Delta t=\text { time Interval } \quad=.01 \mathrm{sec} \\
& \Delta K=\text { Change effective } K \\
& =.1 \times 10^{-4}
\end{aligned}
$$

c. Then we obtain:

$$
P_{1}=1+\left[-1 \times 10^{-4}+0\right] 5 \times 10^{2} \quad=.95
$$

and

$$
P_{2}=.95+\left[-.95 \times 10^{-4}+.05 \times 75 \times 10^{-4}\right] 5 \times 10^{2}=1.09
$$

4. Thus it can be seen that, even with a continuously negative ΔK, we obtain an increase in P after two intervals only .01 second in duration. Hence this method is inapplicable (at least for $\Delta t^{\prime} s$ of the order of .01 sec.) because it produces a fictitious power oscillation.
5. As an example of using other than initial values, we can cite relationships (such as temperature relationships) in which coolant flow is involved. Since we know the flow at the beginning and end of the time interval, it is preferable to use an average value rather than an initial value.
6. Where there are two interrelated variables, such as wall temperature and coolant temperature, the final value is first computed for that variable which is expected to vary more across the interval. This having been computed, an "Average" value can be used for computing the more slowly varying value.
7. The approaches set forth above were used in setting up the numerical calculations which are described more fully below and in Appendix F.
B. METHOD OF CALCULATION
8. Sequence of Cyclic Numerical Calculation
a. For each time interval, the variables are calculated in the following order:
i. $\quad G^{\prime} s$ - (Normalized flows to the .8 power, normalized flows, and average of both)
ii. $\quad T_{f} \quad$ (Effective metal temperature)
iii. T - (Effective water temperature)
iv. ΔK - (Change in effective K)
v. P - (Normalized powers)
vi. D - (Contribution from delayed neutron precursors)
b. The reasoning for using the above order is as follows (numbers refer to sequence in 非l above):
i. The G's are pretty much independent of T^{\prime} s initially, and remain so until thermal siphoning becomes important.
ii. Metal temperature changes faster than water temperature.
iii. With the G's known and after the average T_{f} has been calculated, the T can be calculated.
iv. With T calculated, the ΔK can be calculated for this interval. The final T for interval is used, since analysis indicates that P closely follows the T-induced $\Delta \mathbb{R}$ (as modified by the delayed neutron contributions) for the interval used.
v. With the ΔK known and with the previously calculated (or $t=0$ value) of D available, the P can be calculated.
vi. With P calculated, a new D can be calculated.

2. Relationships Used

The following are the relationships used. Values are those at end of interval unless otherwise stated. Derivations will be found in Appendix F.
a. G $\quad \therefore \quad\left(\frac{a}{a+t}\right)^{1.25}$
b. $\quad T_{f_{i+1}}=Y-\left(Y-T_{f_{i}}\right) e^{-\frac{\Delta t_{i}}{T_{f}}} ; Y=\left(c_{7} \frac{P_{i}}{U_{i}}+T_{i}\right)$
c. $T_{i+1}=T_{i}+\left(\frac{T_{f_{i}} a v g^{-T_{1}}}{T_{1}}\right)-\frac{\left(T_{i}-T_{1}\right)}{T_{2}} \Delta t_{i}$

$$
\frac{1}{\tau_{1}}=\frac{A U}{W C}
$$

$$
\frac{1}{\tau_{2}}=\frac{2 G M_{0}}{w}
$$

d. $\Delta \mathrm{K}=-\mathrm{c}_{3}(\mathrm{~T}-440.8)$
e. $P_{i+1}=\frac{D_{1} \lambda^{*}}{\Delta K_{i+1}^{-\beta}} \begin{aligned} & \text { plus a negligible small exponential } \\ & \text { expression }\end{aligned}$
f. $D_{i+1}=D_{i}+\left(\frac{\beta}{l^{*}} P_{i a v g}-D_{i} \lambda\right) \Delta t_{i}$
3. Symbols Used
$a=A$ constant defining change in flow rate after
pump stops. Has dimensions of seconds.
c $=$ All c's are constants. See next section, on
constants.
D = Density of delayed neutron recursions put on a
power basis
$\mathrm{G}=$ Normalized flow. $\mathrm{G}=1$ at time $0 .(\mathrm{G}=\mathrm{GPM} / 4000)$
$\mathrm{h}=$ Film Coefficient $=\mathrm{cG}^{.8}$ (for turbulent flow)
$\mathrm{K}=$ Effective neutron multiplication
$\mathrm{K}=$ neutrons produced per neutrons lost $=1$ for
critical reactor.
$\ell^{*}=$ Generation time, average lifetime of neutrons from
birth to death in seconds. Takes leakage into
account.
$P=$ Normalized power
$=$ Power $/ 34.1 \times 10^{6} \mathrm{Btu} / \mathrm{hr}$
$=1$ at $t=0$
$T=$ Mean water temperature. Assumed to be equal to
effective water teniperature for both reactivity
and heat transfer. ${ }^{\circ} \mathrm{F}$.
$\mathrm{T}_{1}=$ Inlet water temperature to reactor ${ }^{\circ} \mathrm{F}$.
$\mathrm{T}_{\mathrm{f}}=\underset{\text { water. }}{\text { Effective }}$ metal temperature for heat transfer to
$t=$ Time in seconds.
$\mathrm{U}=$ Heat transfer coefficient, metal to water, Btu/hr ${ }^{\circ} \mathrm{F} \mathrm{ft}^{2}$
$=\frac{1}{\frac{1}{h}+c_{8}}$
$Y=A$ variable used for simplifying relationships
$=\left(c_{7} \frac{P_{1}}{U_{i}}+T_{i}\right)$
$B=$ Proportion of neutrons produced delayed
$\Delta=$ Signifies changes in a variable over an interval
$\lambda=$ Decay constant for delayed neutron precursions sec^{-1}
$\tau=$ Time constant, has dimensions of seconds.
4. Constants

$$
\begin{aligned}
& a=1.02 \mathrm{sec} \\
& C_{1}=\text { is not really a constant but is used for density } \\
& \text { of delayed-neutron precursors. } \\
& c_{2}=\frac{P}{n}=\text { Ratio or power to neutron density } \\
& c_{3}=-2 \times 10^{-4}\left({ }^{\mathrm{O}}\right)^{-1} \\
& c_{4}=\frac{c_{3} \Delta T-B}{l^{*}} \text { negative } \\
& c_{5}=D \lambda \\
& c_{6}=9472 \mathrm{Btu} / \mathrm{sec} \\
& c_{7}=15.5 \mathrm{Btu} / \mathrm{ft}^{2}-\mathrm{sec} \\
& c_{8}=\frac{1}{U_{S}}=3.00\left(\frac{\mathrm{sec}-\mathrm{ft}^{2}-\mathrm{F}}{\mathrm{Btu}}\right) \\
& \ell^{*}=.2 \times 10^{-4} \mathrm{sec} \\
& \beta=75 \times 10^{-4} \\
& \lambda=.08 \mathrm{sec}^{-1} \text { (avg) }
\end{aligned}
$$

5. Initial Values

The following are initial values for the principal variables:
a. $\quad G_{0}=1$
b. . $\quad t_{0}=0$
c. $\quad T_{\mathbf{f}_{\mathbf{O}}}=509^{\circ} \mathbf{F}$
d. $\quad \boldsymbol{\tau}_{\mathbf{f}}=0.3025 \mathrm{sec}$.
e. $\left(T_{1}\right)_{0}=431.6^{\circ} \mathrm{F}$
f. $\left(\mathrm{T}_{2}\right)_{\mathrm{O}}=450.0^{\circ} \mathrm{F}$
g. $\quad T_{0}=440.8^{\circ} \mathrm{F}$
h. $1 / \tau_{1_{0}}=0.6565 \mathrm{sec}^{-1}$
i. $1 / \tau_{2_{0}}=4.869 \mathrm{sec}^{-1}$
j. $\quad \Delta K_{0}=0$
k. $\quad P_{0}=1$

1. $D_{0}=4687.5$

VII. INSTANTANEOUS ZERO FLOW. AT CONSTANT POWER
A. VIENPOINTS AND SUMMARY
2. One of the limiting cases is the time it would take to melt fuel plates if the flow were stopped instantaneously and the reactor power generation rate remained constant.
3. The reactor would first boil away all water and then melt the plates.
4. An even more stringent (and impossible) set of conditions is one in which the plates have no water to transfer heat to, but the heat generation rate remains constant. The latter case was investigated first.
5. The result obtained when it was assumed that no heat could be removed was that the plates melted in about 3 seconds.
6. It might be expected that the temperature rise would be appreciably slower with water present. Calculations indicate that this is not so initially. The reason is that the heat transfer coefficient with no flow is taken as only about 5% of that existing with normal flow.
7. With this and similar assumptions, it turns fut that
with no return of the water boiled away the plates would melt after about 7 seconds.
8. Of course this is extremely pessimistic, as has been illustrated experimentally with an only slightly lower powered reactor. In any case, it gives a rock bottom lower limit.
B. NO HEAT OUT
9. $\frac{\Delta T_{f}}{\Delta t}=\frac{2.8 p}{W_{f} c_{f}}$ (see derivation, Appendix J)
or

$$
\Delta t=\frac{{ }^{W} f_{f}{ }_{f}}{2.8 \mathrm{P}} \Delta \mathrm{~T}_{f}
$$

2. First obtain $w_{f}{ }_{f}$ using fuel plates only.
a. Fuel

$$
\begin{aligned}
\text { Weight } U^{235} & =22.5 \mathrm{~kg} \\
\text { Weight } U & =\sim \frac{22.5}{.9}=25 \mathrm{~kg} \\
\text { Weight } \mathrm{UO}_{2} & =25\left(\frac{235+32}{235}\right)=28.4 \mathrm{~kg} \\
& =28.4 \times 2.2 \mathrm{lb} / \mathrm{kg} \sim 62.5 \mathrm{lb}
\end{aligned}
$$

(While fuel is burned fission products remain and we can assume a rough equivalency in heat capacity.)

Take c_{f} for UO_{2} as $=.08 \mathrm{Btu} / \mathrm{lb}^{\mathrm{O}_{\mathrm{F}}}$
$w_{E} c_{f}=(62.5)(.08)=5$
b. Stainless steel

Weight stainless matrix 98 kg *
Weight stainless clad 42 kg
Weight plates 140 kg 308 lb
c_{f} stainless $\sim .12 \mathrm{Btu} / \mathrm{lb}^{\mathrm{o}} \mathrm{F}$
$w_{f} c_{f}$ stainless (308) (.12) $=37$
c. Total $w_{f} \mathbf{c}_{\mathrm{f}}=37+5=42 \mathrm{Btu} /{ }^{\circ} \mathrm{F}$
3. ΔT
a. ΔT is difference between internal temperature at point of maximum heat generation and the melting temperature.
b. Take internal temperature as $650^{\circ} \mathrm{F}$ (based on new max/av flux ratio of 2.8 given by Alco); max metal temperature with scale present.
c. Take melting temperature at $1420^{\circ} \mathrm{C}$ or $2590^{\circ} \mathrm{F}$
d. $\Delta \mathrm{T}=2590-650=1940^{\circ} \mathrm{F}$.
4. $P=34.1 \times 10^{6} \mathrm{Btu} / \mathrm{hr}$
5. $\frac{\Delta T}{\Delta t}=\frac{2.845 \times 34.1 \times 10^{6}}{42 \times 3600}=642 \quad{ }^{\circ}{ }_{F} / \mathrm{sec}$
6. For $\triangle T$ of $1940^{\circ} \mathrm{F}$

$$
t=\frac{1940}{642}=3.02 \mathrm{sec}
$$

Fuel Temperature vs Time for No Heat
Removal at Steady State Power

(AL)

C. WATER EXPELLED AND NOT RETURNED

1. This calculation was very similar to that in section B except that part of the energy is now removed by boiling away a portion of the water in the core. It was assumed that this heat could be removed until approximately three-fourths of the water had been expelled. After this point had been reached the plate temperature rise was then calculated as in section B on the basis of no heat out.
2. The weight of water expelled from the core was determined from a set of differential equations derived in the first part of Appendix J. The calculation, itself, involved four separate time intervals. The first interval covered that period during which both the plate surface temperature and the bulk coolant temperature remained below the saturation temperature of the water. The second period encompassed that time during which the bulk water temperature remained below saturation while the plate surface temperature exceeded the saturation temperature. The third interval covered that period during which net boiling was taking place, terminating when three-fourths of the water had been expelled. The final interval covered that period during which no heat was removed until finally the melting
point of the fuel element had been reached.
3. The melting point of the plates was taken at $2590^{\circ} \mathrm{F}$ and the plate attained this value 7.4 seconds following the pump failure, as compared with the figure of 3.0 seconds with no water present.
APPENDIX A - RECONCILIATION OF ALCO-SPECIFIED INITIAL CONDITIONS
Contents Page
AA. GENERAL 43
AB. HEAD LOSSES 43
4. Also Data on Head Losses 43
5. Analysis of Reactor 44
6. Analysis of Connecting Piping 46
7. Analysis of Steam Generator 49
8. Loop Parameters 52
AC. HEAT TRANSFER 53
9. Steam Generator 53
10. Reactor 60

AA. GENERAL

Data on pressure drops, etc. for normal operating conditions were obtained from Alco. The relationships used in obtaining such data were not obtained from Alco. Such relationships are well known. However it was highly desirable that conditions existing just prior to pump fallure jibe with steady state data supplied by Alco. (Otherwise we might find ourselves analyzing a different system.) Therefore it was necessary to reconcile results obtained by our relationships with given data.

AB. HEAD LOSSES

1. Alco Data on Head Losses:

Given below are Alco data on head losses, due to friction, in feet of hot water.

Reactor

- Through Cone	.6 ft
Exit and Entrance	.7 ft
Orifice	.4 ft

Total, Reactor	1.7 ft
Piping	4.6 ft
Steam Generator	16.7 ft
Total, Loop	23.0 ft

2. Analysis of Reactor
a. $\quad v_{0}=4.3^{*}$ f.p.s.

$$
=(4.3)(3.6)\left(10^{3}\right)=(15.5)\left(10^{3}\right) \mathrm{ft} / \mathrm{hr}
$$

b. ρ out $=51.75^{*} \mathrm{lb} / \mathrm{ft}^{3}$ @ $450^{\circ} \mathrm{F}$
ρ in $=52.6^{*} 1 \mathrm{~b} / \mathrm{ft}^{3}$ @ $431.6^{\circ} \mathrm{F}$
take $P=52.0$ @ $445^{\circ} \mathrm{F}$
c. $\mu=.295^{*} \mathrm{lb} / \mathrm{ft} \mathrm{hr}$ @ $445^{\circ} \mathrm{F}$.
d. Flow Channel
i. Width $=$ size of box $-2 x$ side plate thickness

$$
\begin{aligned}
& =2.837^{*}-.100^{*} \\
& =2.737 \mathrm{in} .
\end{aligned}
$$

ii. Thickness $=$ Plate Pitch - Plate Thickness

$$
\begin{aligned}
& =.163-.030 \\
& =.133 \mathrm{in} .
\end{aligned}
$$

iii. $D_{e}=(4)($ Channel flow area)/Channel Circumference

$$
=\frac{(4)(2.737)(.133)}{(2)(.737+.133)}
$$

$$
=\frac{(2.737)(.266)}{(2.87)}
$$

$$
=.254 \mathrm{in} .
$$

$$
=.0211 \mathrm{ft}
$$

e. $\operatorname{Re}=\operatorname{Dv} \rho / \mu$
$=\frac{(.0211)\left(15.5 \times 10^{3}\right)(52.0)}{(.295)}$
$=57,700$ (Alco gives 58,400)
f. $L_{f}=23 / 12=1.92 \mathrm{ft}$ (friction length)
$L_{h}=22 / 12=1.83 \mathrm{ft}$ (heat transfer length)
g. $H=\frac{4 f v^{2} L}{2 g D}$
h. From graph, McAdams ρ 156, for commercial pipes, etc.
f
$=. .006$
@ $\operatorname{Re}=57,700$
or

$$
\begin{aligned}
\mathbf{f} & =.054 \mathrm{Re}^{-.2} \\
& =.054 /(57.700)^{.2} \\
& =.054 / 8.95=.00604 \quad \text { say } .006
\end{aligned}
$$

i. $\mathrm{H}=\frac{(4)(.00604)(4.3)^{2}(3600)^{2}(1.92)}{(2)(32.2)(3600)^{2}(.0211)}$
$=.631 \mathrm{ft}$
$=.631 / 1.92=.329 \mathrm{ft} / \mathrm{ft}$
While it is realized that core plates have smooth finish, the $\mathrm{f}=.054 \mathrm{Re}^{-.2}$ relationship will be used since it checks Alco data (. 6 ft) better.
j. For all exit and entrance losses at reactor we can assume loss of $2 x$ velocity head.

$$
\begin{aligned}
\mathrm{H} & =\frac{2 \mathrm{v}^{2}}{2 g} \\
& =\frac{(2)(4.3)^{2}(3600)^{2}}{(2)(32.2)(3600)^{2}} \\
& =.574 \mathrm{ft}
\end{aligned}
$$

k. Total head loss for reactor

$$
\begin{aligned}
& =.629+.574=1.203 \mathrm{ft}, \text { which checks Alco data of } \\
& .6+.7=1.3
\end{aligned}
$$

1. To take care of the above core, exit and entrance losses, and also the orifice loss, we will use a fictitious, equivalent length of 1.7 ft head (Alco) $\div .329 \mathrm{ft} / \mathrm{ft}=5.17 \mathrm{ft}$ equivalent length. This only has meaning for friction and not for heat transfer.
2. Analysis of Connecting Piping
a. Alco specified:

27 ft of 12 in pipe with an "equivalent" length (including fittings; etc.) of $L=85 \mathrm{ft}, \mathrm{ID}=11.376 \mathrm{in}=.948 \mathrm{ft}$.
b. Take avg $\mathrm{T}=445^{\circ} \mathrm{F}$
c. Take avg $\rho=52.0 \mathrm{lb} / \mathrm{ft}^{3}$
d. Take avg $\mu=.295 \mathrm{lbs} / \mathrm{ft} \mathrm{hr} @ 445^{\circ} \mathrm{F}$
e. $W=1.66 \times 10^{6} \mathrm{lb} / \mathrm{hr}$
f. $\quad \operatorname{Re}=\frac{4 \mathrm{~W}}{\mu \pi \mathrm{D}}$

$$
\begin{aligned}
& =\frac{(4)\left(1.66 \times 10^{6}\right)}{(.3)(3.14)(.948)} \\
& =7.44 \times 10^{6}
\end{aligned}
$$

g. Also $W=\frac{\pi D^{2}}{4}$ vp

$$
\begin{aligned}
v_{o} & =\frac{4 \mathrm{~W}}{\pi D^{2}} \\
& =\frac{\left(166 \times 10^{4}\right)(4)}{(3.14)(.948)^{2}(52.0)} \\
& =45,300 \mathrm{ft} / \mathrm{hr} \\
& =12.58 \mathrm{ft} / \mathrm{sec}, \text { say } 12.6
\end{aligned}
$$

h. From graph, McAdams p 156

$$
\begin{aligned}
& \mathrm{f}=.0026 @ \operatorname{Re}=7.44 \times 10^{6} \\
& \text { also try } \\
& \mathrm{f}=.054 \mathrm{Re}^{-.2}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{.054}{(74.4)^{2}\left(10^{5}\right)^{2}} \\
& =\frac{.054}{(2.37)(10)} \\
& =.00228
\end{aligned}
$$

Since, if possible, we wish to use an analytic expression for future transient calculations, we try $\mathrm{f}=.00228$.
i. $(H / L)=4 f \frac{v^{2}}{2 g D}$

$$
\begin{aligned}
& =\frac{4(2.28) 10^{-3}(12.6)^{2}(3600)^{2}}{(2)(32.2)(3600)^{2}(.948)} \\
& =.0237 \mathrm{ft} / \mathrm{ft}
\end{aligned}
$$

j. For 85 ft

$$
\begin{aligned}
\mathrm{H} & =(.0237)(85) \\
\mathrm{H} & =2.015 \mathrm{ft}
\end{aligned}
$$

as compared to Alco figure of:
$H=4.6$
Ratio 4.6/2.015 $=2.28$
k. Since we do not know source of discrepancy and since H for pipe is small fraction of total, we will use value of $\mathrm{H}=4.6$ per Alco
4. Analysis of Steam Generator
a. Primary Loop is through tube side.
b. $v=11.5^{*} \mathrm{ft} / \mathrm{sec}$

$$
=41,400 \mathrm{ft} / \mathrm{hr}
$$

c. OD tube $\quad=.75 \mathrm{in}^{\star}$

Wall thickness $=.065$ in *
ID $=(.75-.13)$
$=.62 \mathrm{in}$.
$=.0516 \mathrm{ft}$
d. Assume avg temperature is 445°. This is high but doesn't affect accuracy much and corresponds to convenient values of ρ and μ.
e. $\rho=52.0 \mathrm{Ib} / \mathrm{ft}^{3}$ @ $T=445^{\circ} \mathrm{F}$
f. $\mu=.295 \mathrm{lb} / \mathrm{ft}-\mathrm{hr}$ @ $\mathrm{T}=445^{\circ} \mathrm{F}$
g. $\frac{\text { Dvp }}{\mu}=\frac{\left(.516 \times 10^{-1}\right)\left(4.14 \times 10^{4}\right)\left(.52 \times 10^{2}\right)}{(.295)}$
$=3.76 \times 10^{5}$ Friction Reynolds number
h. Alco gives 9.33×10^{5}; however it is noted that if Alco figure for Re: fuel plate is multiplied by ratios of diameters and velocity

$$
(58,000)(.0516 / .0211)(11.5 / 4.3)=3.8 \times 10^{5}
$$

So it is assumed that 933,000 is a typographical error, probably a transposition of 393,000 .
i. From McAdams, p 156, $f=.0041 @ \operatorname{Re}=3.8 \times 10^{5}$ for comercial pipe.
From relationship, $\quad f=.054 \mathrm{Re}^{-.2}$

$$
\begin{aligned}
& =\frac{(.054)}{(3.8)^{0.2}(10)^{0.2 \times 5}} \\
& =\frac{.0054}{1.306}=.0041
\end{aligned}
$$

j. $H / L=\frac{4 \mathrm{fv}^{2}}{2 g D}$

$$
\begin{aligned}
& =\frac{(.0164)(11.5)^{2}(3600)^{2}}{(2)(32.2)(3600)^{2}(.0516)} \\
& =\frac{\left(1.6 \times 10^{-2}\right)\left(1.322 \times 10^{+6}\right)}{\left(.64 \times 10^{2}\right)\left(.5 \times 10^{-1}\right)} \\
& =.654 \mathrm{ft} / \mathrm{ft}
\end{aligned}
$$

k. If we take the figure given by Alco
$H=16.7 \mathrm{ft}$
The equivalent length would be
$L=\frac{16.7}{.654}=25.5 \mathrm{ft}$

1. Vaporizer and superheater of steam generator are in parallel, insofar as primary loop is concerned.
m. The asterisked columns of data tabulated below were given. The others follow in an obvious way.

Portion	OD in.	Outside Heat Transfer Area $\mathrm{ft}^{2} / \mathrm{ft}$	No. Tubes	Total Area ft^{2}	Avg Area Per Tube ft	Avg Length Per Tube	Plus 916* ft in Header
Vap.	$.75 *$.1965	$326 *$	$836 *$	2.55	13.0	13.9
Sup.	$.75 *$.1965	$44 *$	$194 *$	4.41	22.4	23.3
Total			370	1030			

n. If we assume one velocity head as the total of the exit, entrance, and bend losses,

$$
\begin{aligned}
\frac{v^{2}}{2 g} & =\frac{(11.5)^{2}}{64.4} \\
& =2.05 \mathrm{ft}
\end{aligned}
$$

$$
\begin{aligned}
0 . H_{\text {bap }} & =[(13.9)(.654)+2.1] \times\left(\frac{11.65}{11.5}\right)^{2} \\
& =[9.1+2.1] \times 1.028 \\
& =[11.5 \mathrm{ft} \text { head } \\
H_{\text {sup }} & =[(23.3)(.654)+2.1] \times\left(\frac{9.95}{11.5}\right)^{2} \\
& =[15.2+2.1] \times .748 \\
& =12.9 \mathrm{ft} \text { head }
\end{aligned}
$$

Also gives 16.7 ft head.
We will use 16.7 and fictitious equivalent $L=25.5$

5. Loop Parameters

Given below is a recapitulation of flow constants and parameters for initial conditions.

AC. HEAT TRANSFER

1. Steam Generator
a. Steam Generator Characteristics and Proportion of Heat to Vaporizer.

The following are roughly the characteristics of the steam generator.*

Part	Heat Removal Rate Btu/hr	No. Tubes	OD in.	Thick. in.	Length ft.	Area ft^{2}	Velocity $\mathrm{ft} / \mathrm{sec}$
Vap.	$3.35 \times 10^{7^{*}}$	326	.75	.065	13	836	11.65^{*}
Sup.	0.06×10^{7}	44	.75	.065	22.4	194	9.95^{\star}
Total	$3.41 \times 10^{7^{*}}$	370				1030	

b. Ratios of Flows
i. If exit and entrance temperatures were the same for both vaporizer and superheater, the ratio of heat flow rates for each would be proportional to the velocity and the number of tubes in each.
ii. Therefore:

Heat to Vap
$\frac{\text { Heat to (super) }+ \text { (vap) }}{}=$
$\frac{\text { (No. tubes } x, v)}{(\text { No. tubes } \times v)+\text { (No. tubes } \times v \text {) }}$

Where $v=$ velocity

[^0]\[

$$
\begin{aligned}
& =\frac{(326)(11.65)}{(326)(11.65)+(44)(9.95)} \\
& =\frac{3800}{3800+438}=\frac{3800}{4238}=.90
\end{aligned}
$$
\]

iii. This is the correct fraction of the flow that goes through vaporizer tubes, but as shown in the next paragraph, the vaporizer must supply 98.1% of the total heat transfer.

c. Temperature Drops Through Vaporizer and Superheater

Taking $450^{\circ} \mathrm{F}$ as inlet temperature to both sets of tubes and T_{1} and T_{2} as respective outlet temperatures of vaporizer and superheater, we require the vaporizer to supply $979.9 \mathrm{Btu} / 1 \mathrm{~b}$ $\left(250^{\circ} \mathrm{F}\right.$ feedwater temperature up to 99.7% quality) and the superheater to supply $16.3 \mathrm{Btu} / \mathrm{Lb}$, to $25^{\circ} \mathrm{F}$ superheat $\left(407^{\circ} \mathrm{F}\right.$, 200 psia); respectively 98.1% and 1.9% of the total heat transfer. These figures are confirmed by

$$
.981 \times 3.41 \times 10^{7}=3.35 \times 10^{7} \mathrm{Btu} / \mathrm{hr}
$$

given by Alco as vaporizer heat removal rate. On this basis we may solve for the outlet temperatures. The mixed mean of T_{1} and T_{2} must be the reactor inlet temperature, $431.6^{\circ} \mathrm{F}$.

$$
\frac{9 \mathrm{~T}_{1}+\mathrm{T}_{2}}{10}=431.6
$$

Also the ratio of total heat removal in vaporizer to that in superheater is

$$
\frac{98.1}{1.9}=\frac{9\left(450-T_{1}\right)}{450-T_{2}}
$$

The temperatures come out $\left\{\begin{array}{l}\mathrm{T}_{1}=429.9^{\circ} \mathrm{F} \\ \mathrm{T}_{2}=446.6^{\circ} \mathrm{F}\end{array}\right.$

d. Temperature Drops vs Heat Flow Rates

Total ΔT relationship can be obtained from p 701 of
Glasstone, which disregards scale relationship for ΔT, is

$$
\Delta T=\frac{b}{a h} \frac{q}{A}+\frac{b \ln b / a}{k} \frac{g}{A}+\frac{1}{c^{.413}}\left(\frac{g}{A}\right)^{.413}
$$

where $\frac{g}{A}=$ Heat flow rate per unit area, with area based on $O D$.
$\mathrm{b}=$ Outside Radius, ft .
a = Inside Radius, ft.
$h=$ Heat transfer coefficient of coolant, Btu/hr ft ${ }^{2} \mathbf{o}_{F}$ $k=$ Conductivity of metal of tube, $\frac{\mathrm{Btu} \mathrm{ft}}{\mathrm{hr} \mathrm{ft}^{2 \mathrm{O}} \mathrm{F}}$
e. Film Drop
i. From p 678 of Glasstone, film drop "h" can be computed from relationship

$$
\mathrm{h}=170\left(1+10^{-2} \mathrm{~T}-10^{-5} \mathrm{~T}^{2}\right) \frac{\mathrm{v}^{.8}}{\mathrm{D}^{.2}}
$$

where

$$
\begin{aligned}
& h=B t u / h r f t^{2} O_{F} \\
& T=440.8^{\circ} \mathrm{F} \text { mean bulk water temperature* } \\
& v=11.5 \mathrm{ft} / \mathrm{sec} \\
& D=.62 \mathrm{in}, \mathrm{ID}(.75-2 \mathrm{x} .065) \\
& \text { 11. } h=170(1+4.4 .-1.945)\left(\frac{7.06}{.908}\right) \\
& =(170)(3.46)(7.79) \\
& =4580 \mathrm{Btu} / \mathrm{hr} \mathrm{ft}{ }^{2} \mathrm{o}_{\mathrm{F}} \\
& \text { iii. } \Delta T=\frac{g}{A}\left(\frac{b}{a}\right) h \\
& b=\left(\frac{.75}{2}\right)\left(\frac{1}{12}\right)=.0313 \mathrm{ft} \\
& a=\left(\frac{.62}{2}\right)\left(\frac{1}{12}\right)=.0258 \mathrm{ft} \\
& \Delta T=\frac{9}{A} \frac{.0313}{.0258} \frac{1}{4580}=\frac{1.21}{.458 \times 10^{4}} \frac{g}{A} \\
& =2.64 \times 10^{-4}\left(\frac{g}{A}\right)^{0} F \\
& \text { f. Drop Through Metal } \\
& \text { 1. } \Delta T=\frac{g}{A} \frac{b \ln \frac{b}{a}}{k}
\end{aligned}
$$

where

$$
k=9.4 \frac{\mathrm{Btu} \mathrm{ft}}{\mathrm{hr} \mathrm{ft}}{ }^{2} \mathrm{O}_{\mathrm{F}} \text { for stainless } 304
$$

*Using inlet or outlet temperature changes h by less than $1 / 3$ of 1%.

$$
\text { ii. } \begin{aligned}
\Delta T & =\frac{g}{A} \frac{.0313 \ln 1.21}{9.4} \\
& =\frac{9}{A} \frac{(.0313) .191)}{9.4} \\
\Delta T & =.000636\left(\frac{g}{A}\right)^{\circ}{ }_{\mathrm{F}}
\end{aligned}
$$

g. Drop Through Boiling Region

$$
\begin{aligned}
& \Delta T=\frac{1}{c^{.413}\left(\frac{q}{\mathrm{~A}}\right)} \\
& \mathrm{c}=81 @ 200 \mathrm{psia}(\mathrm{p} 698, \text { Glasstone }) \\
& 1 \mathrm{c}_{\mathrm{c}} .413=\frac{1}{6.12}=1.635 \times 10^{-1}
\end{aligned}
$$

h. Total Drop

$$
\text { i. } \begin{aligned}
\Delta T & =2.64 \times 10^{-4} \frac{g}{A}+6.36 \times 10^{-4} \frac{g}{A}+1.635 \times 10^{-1}\left(\frac{g}{A}\right) \cdot 413 \\
& =9.00 \times 10^{-4} \frac{g}{A}+1.634 \times 10^{-1}\left(\frac{g}{A}\right)^{.413}
\end{aligned}
$$

ii. Computation of T vs $\frac{g}{A}$ (See graph)

i. Log Mean Temperature Difference

Log Mean $\Delta T=\frac{\Delta T_{3}-\Delta T_{4}}{\ln \frac{\Delta T_{3}}{\Delta T_{4}}}$

$$
\begin{aligned}
\Delta \mathrm{T}_{3} & =450.0-381.8 \\
& =68.2
\end{aligned}
$$

$$
\Delta T_{4}=49.8
$$

Frith Mean $\Delta T=59.0^{\circ}$
Log Mean $\Delta T=\frac{68.2-49.8}{\ln \frac{68.2}{49.8}}$
$=\frac{18.4}{\ln 1.37}$
$=\frac{18.4}{.3145}=58.4$
Log Mean $\Delta T=58.4^{\circ} \mathrm{F}$. This can be compared with arithmetic mean of $59.0^{\circ} \mathrm{F}$. (However at other than initial conditions, such as reduced flow in primary system, the discrepancy becomes important.)
j. Comparison of ΔT 's and Thermal Resistances
i. Mean $(q / A)=4.00 \times 10^{4} \mathrm{Btu} / \mathrm{ft}^{2} \mathrm{hr}$ in vaporizer.

Log Mean $\Delta T=58.4^{\circ} F$
ii. At mean q / A a comparison is given of "resistances" both as computed and as supplied by Alto, and ΔT 's both as computed directly and as computed from thermal resistances
supplied by Alco. Using the Alco figure, $33.5 \times 10^{6} \mathrm{Btu} / \mathrm{hr}$. for vaporizer, mean $q / A=\frac{33.5 \times 10^{6}}{836}=4.00 \times 10^{4} \mathrm{Btu} / \mathrm{ft}^{2} / \mathrm{hr}$.
k. Comparison of Computed and Alco Supplied Data

Quantity or Location	Used in Computing Both ΔT s	Computed		Supplied by Alco		
		Resist.	${ }^{-} \Delta T$	Conduct	Resist.	ΔT
q/A	4.00×10^{4}					
Film		.000264**	10.6	3810*	. 000263	10.5
Metal		.000636**	25.4		.000620*	24.8
Scale					.000300*	12.0
Boiling		. 000326	13.1**	5200*	. 000192	7.7
Total		. 001245	49.8		. 001375	55.0
$\underset{\Delta T}{\log } \text { Mean }$			58.4			57.2*
$\begin{gathered} \text { Overall U } \\ 1 / \mathrm{U} \end{gathered}$				702*	. 001425	

* Primary Information from Alco
** Primary Computation

2. Reactor
a. Heat Transfer Coefficient

Using the expression for the heat transfer coefficient, h, as found on page 678 in Glasstone's Principles of Nuclear Reactor Engineering, for turbulent flow:
$\mathrm{h}=170\left(1+10^{-2} \mathrm{~T}-10^{-5} \mathrm{~T}^{2}\right) \mathrm{v}^{0.8} / \mathrm{D}^{0.2}$
where

$$
\begin{aligned}
& T=\text { average water temperature }-{ }^{\circ}{ }_{\mathbf{F}} \\
& v=\text { coolant velocity - ft/sec } \\
& D_{e}=\text { equivalent diameter - inches. } \\
& T=\frac{T_{1}+T_{2}}{2}=\frac{431.6+450}{2}=441^{\circ} \mathrm{F} \\
& v=4.3 \mathrm{Gt} / \mathrm{sec} \\
& D_{e}=(0.0211)(12)=0.254 \text { inches. } \\
& \left(1+10^{-2} \mathrm{~T}-10^{-5} \mathrm{~T}^{2}\right)=3.47 \\
& \mathrm{~h}=170(3.47) \mathrm{v}^{0.8} / \mathrm{D}_{\mathrm{e}}^{0.2}=590 \mathrm{v}^{0.8} / \mathrm{D}_{\mathrm{e}} 0.2 \\
& \mathrm{v}^{0.8}=3.21 \mathrm{G}^{0.8} \\
& D_{e}^{0.2}=0.76
\end{aligned}
$$

The above figure compares very favorably with the value
of 2570 listed in the Hazard Report. To keep problem consistent with other A.1co data, the value of 2570 $\mathrm{Btu} / \mathrm{hr}-{ }^{\circ} \mathrm{F}-\mathrm{ft}^{2}$ will be used in subsequent calculations for the heat transfer coefficient.
b. Check of Maximum Wetted-Surface Temperature.

Using the value for the maximum to average power distribution of $4: 1$, the maximum wetted surface temperature was calculated on the basis of a chopped cosine axial distribution having a maximum to average of 1.31:1.
c. Calculations

$$
\begin{aligned}
& Q_{\max }=4 Q_{a v} \\
& \left(P_{\max } / P_{a v}\right)_{\text {axial }}=1.31
\end{aligned}
$$

$$
\frac{1}{a} \int_{0}^{a} \cos \frac{\pi x}{2 L} d x=\frac{1}{1.31}
$$

$$
\left.\frac{2 L}{\pi a} \sin \frac{\pi x}{2 L}\right|_{0} ^{a}=\frac{2 L}{\pi a} \sin \frac{\pi a}{2 L}
$$

$$
\sin \frac{\pi a}{2 L}=\frac{2 \pi a}{2(1.31) L}=1.2 \frac{a}{L}
$$

$$
\sin 1.57 \frac{2}{\mathrm{~L}}=1.2 \frac{\mathrm{a}}{\mathrm{~L}}
$$

$$
\frac{\pi \mathrm{a}}{2 \mathrm{~L}}=1.235 \quad a=0.9165 \mathrm{ft} .
$$

$$
\frac{\pi}{2 \mathrm{~L}}=1.346
$$

$$
Q=Q_{0} \cos 1.346 x
$$

$$
T_{f}-T_{0}=\frac{A}{W c_{p}} \int_{-a}^{x} Q d x
$$

$$
T_{f}-T_{o}=\frac{Q_{O_{M a x}}^{p}}{W c_{p}} \int_{-a}^{x} \cos \frac{(\pi x)}{2 L} d x
$$

$$
\frac{2 Q_{O_{\max }} A L}{\pi W c_{p}}\left[\sin \frac{\pi x}{2 L}+\sin \frac{\pi a}{2 L}\right]=T_{f}-T_{0}
$$

$$
T_{s}-T_{f}=\frac{Q_{o_{\text {max }}} V}{h A_{h}} \cos \frac{\pi x}{2 L}
$$

$$
T_{s}-T_{0}=\frac{Q_{o_{\text {max }}} V L}{\pi W c_{p}{ }^{a}}\left[\sin \frac{\pi x}{2 L}+\sin \frac{\pi a}{2 L}\right]+\frac{Q_{O_{\max }}}{h A_{h}} \cos \frac{\pi x}{2 L}
$$

Differentiating to locate the maximum temperature,

$$
\frac{Q_{a v} V}{W c_{p}}=18.4 \mathrm{~F}^{0}
$$

$$
Q_{O_{\max }}=4 Q_{\mathrm{av}}
$$

$$
\frac{Q_{O_{\max }} V}{W c_{p} \pi}=18.4(4 / \pi)=23.4 F^{\circ}, \quad \frac{L}{a}=1.27
$$

$$
\sin \frac{\pi a}{2 L}=\sin 70.8^{\circ}=0.9442
$$

$$
\operatorname{ctn} \frac{\pi x_{\text {max }}}{2 L}=\frac{\pi a W c_{p}}{L h A_{h}} \quad=2.92
$$

$$
\begin{aligned}
& \frac{Q_{O_{\text {max }}}^{V}}{2 W c_{p} a} \cos \frac{\pi x}{2 L}=\frac{Q_{O_{\text {max }}} V \pi}{2 L h A_{h}} \sin \frac{\pi x}{2 L} \\
& \tan \frac{\pi x}{2 L}=\frac{\operatorname{LhA}_{h}}{\pi a W c_{p}} \\
& T_{s_{\max }}-T_{0}=\frac{Q_{0_{\text {max }}}}{\pi W c_{p} a}\left[\sin \frac{\pi x_{\text {max }}}{2 L}+\sin \frac{\pi a}{2 L}+\cos \frac{\pi x_{\text {max }}}{2 L} \operatorname{ctn} \frac{\pi x_{\text {max }}}{2 L}\right] \\
& =\frac{Q_{O_{\max }} V L}{\pi W c_{p} a}\left[\sin \frac{\pi a}{2 L}+\csc \frac{\pi x_{\max }}{2 L}\right] \\
& \text { Let } \delta=\sin \frac{\pi \mathrm{a}}{2 \mathrm{~L}}+\csc \frac{\pi \mathrm{X}_{\max }}{2 \mathrm{~L}}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{ctn}^{2}\left(\frac{\pi x_{\text {max }}}{2 \mathrm{~L}}\right)=8.5 \\
& \csc ^{2}\left(\frac{\pi x_{\text {max }}}{2 \mathrm{~L}}\right)=9.5 \\
& \csc _{\frac{\pi \mathrm{x}_{\text {max }}}{2 \mathrm{~L}}=3.085} \\
& =3.085+0.944=4.029 \\
& \mathrm{~T}_{\mathrm{s}_{\text {max }}}-\mathrm{T}_{\mathrm{O}}=4.03(1.27)(23.4)=120 \mathrm{~F}^{\mathrm{o}} \\
& \mathrm{~T}_{\mathrm{s}_{\text {max }}}=431.6+120=552^{\circ} \mathrm{F}
\end{aligned}
$$

The value of $552^{\circ} \mathrm{F}$ checks very well with the figure of $554^{\circ} \mathrm{F}$ listed for the maximum surface temperature in the Hazards Report.
APPENDIX B - FRICTION HEAD LOSS vs FLOW
Contents Page

1. Velocities and Flow Rates 66
2. Reynolds Number vs. Flow 66
3. Transition, Turbulent to Laminar Flow 66
4. Turbulent Flow 67
5. Value of F at Transition 68
6. Laminar Flow 69
7. Curves 69

1. Velocities and Flow Rates

a. For densities which can be taken as constant, v depends only upon F.
b. In fact:

$$
\begin{array}{ll}
\text { Reactor } & \mathbf{v}=(4.3 / 4000) \mathrm{F} \\
\text { Steam Gen. } & \mathbf{v}=(11.5 / 4000) \mathrm{F} \\
\text { Piping } & \mathbf{v}=(12.6 / 4000) \mathrm{F}
\end{array}
$$

2. Reynolds Number vs. Flow

a. By using same line of reasoning as for " H " in turbulent flow:

$$
\operatorname{Re}=C^{\prime} F
$$

with C^{\prime} such that it gives same Re for $F=4000$ as is found in Appendix A.
b. Therefore:

$$
\begin{aligned}
\text { Reactor } \operatorname{Re} & =58,000(F / 4000)=14.5 F \\
\text { Steam Gen } \operatorname{Re} & =380,000(F / 4000)=95 \mathrm{~F} \\
\text { Piping } \operatorname{Re} & =7,440,000(F / 4000)=1860 \mathrm{~F}
\end{aligned}
$$

3. Transition, Turbulent to Laminar Flow
a. Laminar flow runs to Re as high as 2×10^{3}. Actual curve for f dips below curves for f for laminar and turbulent.
b. We use two expressions:

$$
\begin{array}{rlrl}
\mathbf{f} & =16 / \mathrm{Re} & \text { Laminar } \\
\mathbf{f}_{\mathrm{r}} & =.054 /(\mathrm{Re}) .2 & & \text { turbulent }
\end{array}
$$

c. At intersection $f=f_{t}$

$$
\begin{aligned}
\frac{\mathrm{Re}}{16} & =\frac{\mathrm{Re}^{.2}}{.054} \\
(\operatorname{Re})^{.8} & =\frac{16}{.054} \\
\operatorname{Re} & =\left(\frac{16}{.054}\right)^{1.0 / .8} \\
\operatorname{Re} & =(296)^{1.25}=1230
\end{aligned}
$$

If we use this as transition, we are conservative.
4. Turbulent Flow
a. For turbulent flow, friction head is

$$
H=\frac{4 f^{2} L}{2 g D}
$$

b. For a system whose dimensions are fixed, H depends only upon f and v^{2}.
c. From Appendix A,

$$
f=.054 \mathrm{Re}^{-.2}
$$

or if p and μ are taken constant, f is proportional to $\mathrm{F}^{-.2}$
d. Therefore:

$$
\mathrm{H}=\mathrm{CF}^{2} \mathrm{~F}^{-.2}
$$

$$
=C F^{1.8}=C^{\prime \prime} G^{1.8}\left(\text { since } G=\frac{F}{4000}\right)
$$

e. $C^{\prime \prime}$ must give same value at $F=4000$ as are found in Appendix A. So for turbulent flow,

Reactor

$$
\mathrm{H}=1.7 \mathrm{G}^{1.8}
$$

Steam Gen
$\mathrm{H}=16.7 \mathrm{G}^{1.8}$
Piping $\mathrm{H}=4.6 \mathrm{G}^{1.8}$

Total $\mathrm{H}=23.0 \mathrm{G}^{1.8}$
5. Value of F at T ransition

$$
\text { a. } \begin{aligned}
\mathrm{Re} & =1230 \text { at transition } \\
\operatorname{Re} & =C^{\prime} \mathrm{F} \\
\mathrm{~F} & =1230 / \mathrm{C}^{\prime} \text { at transition } \\
\text { also } \mathrm{H} & =\mathrm{C}^{\prime \prime} \mathrm{G}^{1.8}
\end{aligned}
$$

b. Therefore:

Component	(1) C^{\prime}	$\begin{aligned} & (2) \\ & 1230 / C^{\prime} \\ & =F \text { trans } \\ & 1230 /(1) \end{aligned}$		(4) ${ }^{(3)}$	$\begin{gathered} (5) \\ \mathbf{C}^{\prime \prime} \\ \text { from } \\ \text { App } \mathbf{A} \end{gathered}$	(6) H (5)(4)
Reactor	14.5	84.8	47.1	1.032×10^{3}	1.7	1.645×10^{-3}
Steam Gen.	95.0	12.95	309.	3.033×10^{4}	16.7	5.51×10^{-4}
Piping	1,860.	0.661	6050.	6.398×10^{6}	4.6	7.19×10^{-7}

6. Laminar Flow

$$
\begin{aligned}
\text { a. } \quad \begin{aligned}
H & =\frac{64}{\rho} \quad \frac{\mu}{D v \rho} \quad \frac{v^{2} L}{2 g} \\
H & =C^{\prime \prime \prime} F
\end{aligned}
\end{aligned}
$$

where C"' gives proper H at transition
b. $C^{\prime \prime \prime}=(H / F) @$ transition
c.

	H transition	Ftransition	$\mathrm{C}^{\prime \prime \prime}$
Reactor	1.645×10^{-3}	84.8	$1.94 \times 10^{-5} \mathrm{~F}$
Stearn Gen.	5.51×10^{-4}	12.95	$4.26 \times 10^{-5} \mathrm{~F}$
Piping	7.19×10^{-7}	0.661	$1.086 \times 10^{-6} \mathrm{~F}$

7. Curves

Curves of H vs F will be found on the next curve sheet.
(

APPENDIX C - CONVECTION FLOW (THERMAL SIPHONING) RELATIONSHIPS

Contents

Page

1. Basic Relationships 72
2. Pressure Differentials 72
a. Pressure Differential Produced by Parts of Loop other than Steam Generator 72
b. Pressure Differential Produced by Steam Generator 74
c. Total Pressure Differential for Loop 76
3. Derivation of Temperature Drop, Flow and Power Relationships 77
a. Flow and Temperature Drop 77
b. Flow and Power 77
c. Power and Temperature Drop 78
4. Numerical Results 79
5. Other Assumptions on Steam Generator 81
a. Effect of Assumptions 81
b. Axial Temperature Distribution in Steam Generator, Normal Operation 82
c. Total Pressure Differential for Loop; Case of Zero Contribution from Steam Generator 85
6. Basic Relationships
a. Σ (Heads causing flow) $=\Sigma$ (Friction heads)
$\frac{\Delta \mathrm{p} \text { causing flow }}{\rho_{\mathrm{av} \text { around loop }}}=\mathrm{H}_{\mathrm{o}}\left[\frac{\mathrm{F}}{4000}\right]^{1.8}=\mathrm{H}_{0} \mathrm{G}^{1.8} \quad$ (turbulent flow)

$$
\text { where G. }=\frac{F}{4000}
$$

$$
H_{0}=\text { friction head at full flow }=23.0 \mathrm{ft} .
$$

b. Use simplified diagram on next page to visualize loop and to obtain vertical dimensions of loop.
2. Pressure Differentials
a. Pressure Differential Produced by Parts of Loop Other Than

Steam Generator

$$
\begin{aligned}
& \text { 1. } \Delta p \quad \Delta p \quad \Delta p \\
& \Delta \mathrm{p}=\begin{array}{l}
\text { from } \\
\text { reactor }
\end{array}=\begin{array}{l}
\text { from riser above } \\
\begin{array}{l}
\text { reactor and below } \\
\text { steam generator }
\end{array}
\end{array}+\begin{array}{l}
\text { from downward-going } \\
\text { portion of pipe below } \\
\text { steam generator }
\end{array} \\
& \text { ii. or (see loop diagram) } \\
& \Delta \mathrm{p}=-\mathrm{L}_{1} \frac{\rho_{1}+\rho_{2}}{2}-\left(\mathrm{L}_{2}-\mathrm{L}_{1}\right) \quad \rho_{2}+\mathrm{L}_{2} \rho_{1} \\
& =\frac{\rho_{1}-\rho_{2}}{2}\left(2 L_{2}-L_{1}\right)
\end{aligned}
$$

From aldo Drawings:

$$
\begin{aligned}
& L_{1}=183 \mathrm{ft} \\
& L_{2}=425 \mathrm{ft} \\
& L_{3}=11.33 \mathrm{ft}
\end{aligned}
$$

…Sheet 7. Simplified Piping Diagram

Pressure Differential Produced by Steam Generator

i. Actually there are several possible results which can be obtained for Δp (due to thermal convection) through the steam generator. The one obtained depends upon the assumptions made for rate of heat flow from the water as a function of distance through the steam generator. Several of these will be discussed, but the one discussed immediately below can be used in most situations.
ii. Assume that $\frac{d p}{d T}$ is constant over the temperature range of the loop, and that $\frac{d T}{d L}=$ one constant for up-leg of heat exchanger and $\frac{d T}{d L}=$ another constant for down-leg of heat exchanger. Then the temperature and density variations through the heat exchanger will be as shown on Figures (a) and (b) of curve sheet 8 .
iii. The difference between mean densities in the two legs will be

$$
\Delta p=\frac{\rho_{1}+\rho_{3}}{2}-\frac{\rho_{2}+\rho_{3}}{2}=\frac{\rho_{1}-\rho_{2}}{2}
$$

which is independent of the density (and temperature) at the top of the loop. Therefore the contribution to thermal siphoning Δp by the heat exchanger is independent of the

Sheet 8. Temperature and Density Variation
fraction of the total heat removal which occurs in the upleg. This is nearly the normal situation; as demonstrated later.
iv. Based on the above,

$$
\begin{aligned}
\Delta \mathbf{p} & =\text { (leg length) (density difference) } \\
& =\left(L_{3}-L_{2}\right) \frac{\left(\rho_{1}-\rho_{2}\right)}{2}
\end{aligned}
$$

c. Total Pressure Differential for Loop

1. $\Delta p=\Delta p$ reactor and piping $+\Delta p$ steam generator

$$
=\frac{\left(\rho_{1}-\rho_{2}\right)}{2}\left(2 L_{2}-L_{1}\right)+\left(L_{3}-L_{2}\right) \frac{\left(\rho_{1}-\rho_{2}\right)}{2}
$$

ii. $\Delta \mathrm{p}=\frac{\rho_{1}-\rho_{2}}{2}\left[\mathrm{~L}_{3}-\mathrm{L}_{2}+2 \mathrm{~L}_{2}-\mathrm{L}_{1}\right]=\frac{\rho_{1}-\rho_{2}}{2}\left[L_{3}+L_{2}-L_{1}\right]$
for heat removal not concentrated in a length $L_{H}<L / 2$.
iii. For this case, we can define an "equivalent loop length"

$$
\begin{aligned}
\mathrm{L}_{\mathrm{e}} & =\mathrm{L}_{3}+\mathrm{L}_{2}-\mathrm{L}_{1} \\
& =11.33+4.25-1.88 \quad \text { (see loop diagram) } \\
& =13.75 \mathrm{ft} . \text { for this system }
\end{aligned}
$$

iv. $\quad \Delta p=\frac{\rho_{1}-P_{2}}{2} L_{e}$

$$
=\frac{\rho_{1}-\rho_{2}}{2} 13.75 \mathrm{lb} / \mathrm{ft}^{2} \text { when } \mathrm{f}^{\prime} \mathrm{s} \text { are } \mathrm{lb} / \mathrm{ft}^{3}
$$

3. Derivation of Temperature Drop, Flow and Power

Relationships.

a. Flow and Temperature Drop
i. $\quad 1 / 2 \frac{\left(\rho_{1}-\rho_{2}\right)}{\rho_{\text {avg }}} L_{e}=H_{o} G^{1.8}$
ii. But from Aldo $\frac{d p}{d T}=-.046$ in temperature range of interest, so that $\left(p_{1}-p_{2}\right)=.046\left(T_{2}-T_{1}\right)$

111: $\frac{.046\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right) \mathrm{L}_{\mathrm{e}}}{2 \rho_{\text {avg }}}=\mathrm{H}_{\mathrm{o}} \mathrm{G}^{1.8}$

$$
\begin{aligned}
& \left(T_{2}-T_{1}\right)=\frac{\rho_{\text {avg }}}{L_{e}} \frac{H_{0} G^{1.8}}{.023} \\
& \text { for turbulent flow } \\
& \left(T_{2}-T_{1}\right)=\frac{\rho_{\text {avg }}}{L_{e}} \frac{H}{.023} \\
& \text { with } H \text { from curve of } H
\end{aligned}
$$

b. Flow and Power
1.
$\quad \begin{aligned} & \text { Power } \\ & \text { Removal } \\ & \text { Rate }\end{aligned} \quad \begin{aligned} & \text { Weight } \\ & \text { Flow } \\ & \text { Rate }\end{aligned} \quad \times \quad \begin{aligned} & \text { Heat } \\ & \text { Removed }\end{aligned}$
Per Unit Weight
ii. $\mathrm{Q}($ Btu hr$)=\left(\mathrm{VAP}_{\mathrm{avg}}\right)\left(\mathrm{c}_{\mathrm{p}}\right)\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$

$$
=W c_{p}\left(T_{2}-T_{1}\right) \text {, where } W=\text { Weight flow rate, } 1 \mathrm{~b} / \mathrm{hr}
$$

iii. $\quad W=W_{0}{ }^{G}$

$$
\text { where } W_{0}=\text { Weight flow rate (normal operating) }
$$

$$
G=F / 4000
$$

iv.

$$
\begin{aligned}
Q & =W c_{p}\left(T_{2}-T_{1}\right) \\
& =W_{0} G c_{p} \frac{P_{a v g}}{L_{e}} \frac{H_{0} G^{1.8}}{.023} \quad \text { (for turbulent flow) }
\end{aligned}
$$

$$
Q=W_{o} c_{p} \frac{P_{\text {avg }}}{L_{e}} \frac{H_{o} G^{2.8}}{.023}
$$

v. $\quad k w=\frac{Q}{3413}=\frac{W_{o} H_{o} c_{p} P_{\text {avg }}}{78.5 L_{e}} G^{2.8}$
vi. Normalized power: $\quad \mathrm{P}=\frac{\mathrm{W}_{0} \mathrm{H}_{0} \mathrm{C}_{\mathrm{p}} \rho_{\text {avg }}}{78.5 \times 10^{4} L_{e}} G^{2.8}$

$$
\left(P=1 \text { for } 10^{4} \mathrm{kw}\right. \text {, rated Output) }
$$

c. Power vi s Temperature Drop

1. From flow vs temperature drop

$$
G^{1.8}=\frac{\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right) \mathrm{L}_{\mathrm{e}}}{\rho_{\mathrm{avg}} \mathrm{H}_{\mathrm{o}}} \times .023
$$

ii. From flow vs power

$$
G^{2.8}=\frac{P(.3413)(.023) L_{e}}{W_{o} H_{o} c_{p} P_{\text {avg }}}
$$

iii. Also note that

$$
G^{2.8}=\left[G^{1.8}\right]^{\frac{2.8}{1.8}}=\left(G^{1.8}\right) \quad 1.556
$$

iv. Therefore

$$
\begin{aligned}
& G^{2.8}=\left[\frac{\left(T_{2}-T_{1}\right) L_{e} .023}{\rho_{\text {avg }} H_{o}}\right]^{1.556}=\left[\frac{.023 L_{e}}{\rho_{\text {avg }} H_{o}}\right]\left[\frac{.3413 \mathrm{P}}{W_{0} c_{p}}\right] \\
& \mathrm{P}=\left(T_{2}-T_{1}\right)^{1.556}\left[\frac{L_{e} .023}{\rho_{a v} H_{o}}\right]^{.556}\left[\frac{W_{0} c_{p}}{.3413}\right]
\end{aligned}
$$

4. Numerical results
a.

$$
\begin{aligned}
& P_{\mathrm{av}}=52.17 \mathrm{lb} / \mathrm{ft}^{3} \\
& \mathbf{L}_{\mathbf{e}}=13.75 \mathrm{ft}, \text { equivalent length } \\
& \mathrm{H}_{\mathbf{o}}=23.0 \mathrm{ft}, \text { head } \\
& \mathrm{W}_{\mathbf{o}}=1.66 \times 10^{6} \mathrm{lb} / \mathrm{hr} \\
& \mathbf{c}_{\mathbf{p}}=1.115 \mathrm{Btu} / 1 \mathrm{~b}-{ }^{0} \mathrm{~F}
\end{aligned}
$$

b.

$$
\frac{\rho_{\mathrm{avg}^{H_{o}}}}{\mathrm{~L}_{\mathrm{e}}^{\mathrm{x.023}}}=\frac{5217 \times 23.0}{13.75 \times .023}=3790
$$

so that

$$
\left(T_{2}-T_{1}\right)=3790 G^{1.8} \text { for turbulent flow only. }
$$

c. Also note that

$$
\frac{\rho_{\text {avg }}}{L_{e} \times .023}=164.5
$$

so that

$$
\left(T_{2}-T_{1}\right)=164.5 \mathrm{H} \text { for laminar or turbulent flow }
$$

d. $\frac{W_{0} c_{p} P_{\mathrm{av}_{0}}{ }_{0}}{78.5 \times 10^{4} L_{e}}=\frac{1.66 \times 10^{6} \times 1.115 \times 52.17 \times 23.0}{78.5 \times 10^{4} \times 13.75}$

$$
=205.8
$$

Hence

$$
\begin{array}{ll}
P=206 \cdot G^{2.8} \\
\text { and } k W & \\
\text { for turbulent flow }
\end{array}
$$

e. Although the laminar flow range turns out to have little bearing on this problem, the corresponding relations are given:

$$
\frac{W_{0} c_{p} P_{\text {avg }}}{78.5 L_{e}}=\frac{1.66 \times 10^{6} \times 1.115 \times 52.17}{78.5 \times 13.75}=8.94 \times 10^{4}
$$

Hence $\mathrm{kw}=8.94 \times 10^{4} \mathrm{GH}$

$$
\begin{aligned}
& =22.3 \mathrm{FH} \quad \text { (H from laminar flow curve) } \\
\mathrm{P} & =8.94 \mathrm{GH}
\end{aligned}
$$

5. Other Assumptions on Steam Generator

a. Effect of Assumptions
i. The above relationships break down if the temperature drop and density rise $\boldsymbol{o c}$ cur substantially in some distance L_{H}, well before reaching the top or the bottom of the loop. For example, the temperature
. and density variations through the heat exchanger might be represented as in Figures (c) and (d) of curve sheet 8.
ii. In this case, the effective density increment between the two legs would be

$$
\begin{aligned}
\Delta \rho & =\rho_{1}-\left[\frac{\rho_{1}+\rho_{2}}{2} 2 L_{H} / L+\rho_{1} \frac{L-2 L_{H}}{L}\right] \\
& =\left(\rho_{1}-\rho_{2}\right) \quad L_{H} / L \text { for } L_{H}<L / 2
\end{aligned}
$$

iii. If, on the other hand, (Figures e and f), the effective length should terminate somewhere on the down-leg of the steam generatcr (i.e. $L / 2<L_{H}<L$) the effective density increment will be higher than if the entire loop were used. If, for example, the temperature and density variations in the generator were as shown in Figures \mathbf{e} and f, the effective density increment between the two legs would become

$$
\Delta f=\left(P_{1}-P_{2}\right)\left(2-L_{H} / L-L / 2 L_{H}\right) \text { for }\left(L / 2<L_{H}<L\right)
$$

This effect is represented graphically by Figure (g). iv. The pressure differential produced by steam generator (see loop diagram) for the case of rapid heat removal ($L_{H}<L / 2$)

$$
\Delta \mathrm{P}_{\mathrm{H}}=\left(\mathrm{L}_{3}-\mathrm{L}_{2}\right)\left(\rho_{1}-\rho_{2}\right)\left(L_{H} / L\right)
$$

(see item 5, a, ii)
b. Axial Temperature Distribution in Steam Generator
(Normal Operation)
i. Because of the dependence of the thermal-siphoning driving head upon the difference in mean densities of the water between the heat-exchanger legs, it is important to investigate the axial temperature distribution through the primary tubes of the steam generator.
ii. Assuming constant thermal resistance between priwary and secondary water, for the entire length L of the vaporizer tubes, and defining c as a constant to be determined by end conditions,
iii. $-\frac{d T}{d x}=c\left(T-T_{s}\right)$

$$
\begin{aligned}
& \mathrm{x}=0, \mathrm{~T}=\mathrm{T}_{3} \\
& \mathrm{x}=\mathrm{L}, \mathrm{~T}=\mathrm{T}_{4}
\end{aligned}
$$

$$
\begin{aligned}
& \int_{T_{3}}^{T} \frac{d T}{T-T_{s}}=-c \int_{0}^{x} d x \\
& \left.\ln \left(T-T_{8}\right)\right|_{0} ^{T}=-\left.c x\right|_{0} ^{x} \\
& \ln \frac{T-T_{s}}{T_{3}-T_{s}}=-c x \\
& \frac{T-T_{s}}{T_{3} T_{8}}=e^{-c x}
\end{aligned}
$$

relations giving T for any position x along the tubes

To evaluate c:

$$
\begin{aligned}
& \frac{T_{4}-T_{8}}{T_{3}-T_{s}}=e^{-c L} \\
& c L=\ln \frac{T_{3}-T_{s}}{T_{4}-T_{s}}
\end{aligned}
$$

iv. Let $T_{3}=450^{\circ} \mathrm{F}, \mathrm{T}_{4}=432^{\circ} \mathrm{F}, \mathrm{T}_{\mathrm{s}}=382^{\circ} \mathrm{F}$ (for full flow condition).

$$
\begin{aligned}
& \dot{c L}=\ln \frac{T_{3}-T_{8}}{T_{4}-T_{8}}=\ln \frac{68}{50}=\ln 1.36=0.307 \\
& \frac{T-T_{8}}{68}=e^{-.307 \times / L}
\end{aligned}
$$

x / L	$.307 \frac{\mathrm{x}}{\mathrm{L}}$	$\mathrm{e}^{.307 \frac{\mathrm{x}}{\mathrm{L}}}$	$\mathrm{T}-382$	$\mathrm{~T}\left({ }^{0} \mathrm{~F}\right)$
0.00	0.000	1.000	68.0	450.0
.25	.077	1.080	63.0	445.0
.50	.154	1.166	58.3	440.3
0.75	.230	1.259	54.1	436.1
1.00	0.307	1.360	50.0	432.0

v. For $\mathrm{T}_{3}=476^{\circ} \mathrm{F}, \mathrm{T}_{4}=406^{\circ} \mathrm{F}, \mathrm{T}_{\mathrm{S}}=382^{\circ} \mathrm{F}$ (quasi-steady state),

$$
\mathrm{cL}=\frac{\ln \frac{\mathrm{T}_{3}-\mathrm{T}}{\mathrm{~s}}}{\mathrm{~T}_{4}-\mathrm{T}_{\mathrm{s}}}=\ln \frac{94}{24} \ln 3.92=1.366
$$

$$
\frac{T-T_{s}}{94}=e^{-1.366 x / L}
$$

$$
x / L \quad 1.366 \mathrm{x} / \mathrm{L} \quad \mathrm{e}^{1.366 \mathrm{x} / \mathrm{L}} \quad \mathrm{~T}-382 \quad \mathrm{~T}\left({ }^{\left.\mathrm{O}_{\mathrm{F}}\right)}\right.
$$

0.00	0.000	1.000	94.0	476.0
.25	.342	1.407	66.8	448.8
.50	0.683	1.98	47.5	429.5
0.75	1.024	2.78	33.9	415.9
1.00	1.366	3.92	24.0	406.0

The results of Sections $5-b$ iv and v, for the full-flow and quasi-steady axial temperature distributions through the steam generator, are plotted on the next page. It will be seen that for both cases the representation by straight lines over spans $L / 2$ is a very good approximation. Hence the density increment $\frac{\rho_{1}-\rho_{2}}{2}$ (Section $2-b$) is applicable to our problem, and the variations discussed in Section 5-a are not needed.
c. Total Pressure Differential for Loop; Case of Zero Contribution from Steam Generator
i. It should be noted that for heat removal in an extremely short length $L \longrightarrow 0$, the steam generator would make zero pressure contribution to thermal siphoning.

1i. Therefore

$$
L_{e}=2 L_{2}-L_{1}=8.50-1.83=6.67 \mathrm{ft} \cdot\left(L_{H} 0\right)
$$

whereas

$$
\left.L_{e}=13.75 \mathrm{ft}\left(\mathrm{~L}_{\mathrm{H}}=\mathrm{L} / 2 \text { or } \mathrm{L}\right) . \quad \text { (see Figure } \mathrm{h}\right)
$$

We have shown that the "full" value of equivalent length, 13.75 ft , is applicable to our problem.

- ${ }^{1}$													
	\square												
		-	,	,									
			U	1									
-		\cdots		\%us									
		\cdots											
-													
			\cdots	N									
		\dagger						+					
			-										
\%				+i-									
\square													
			+										
H-60			-4/4	4-		14							
-													
\square				Stet		9							

APPENDIX D - STEAM GENERATOR RELATIONSHIPS FOR.QUASI- STEADY STATE
Contents Page

1. Assumptions on Steam Generator 88
2. Thermal Resistance Components 89
3. Temperature Drops for Decreasing Power and Flow 89
4. Power-Flow Relationships to Satisfy Steam-Generator Conditions 91

1. Assumptions on Steam Generator

On the basis of the comparisons in Appendix A, and considering that the steam generator was presumably designed according to conservative practices, we are justified in assuming conditions which seem reasonable and which are conservative for the particular computation involved. With this in mind, the following are assumed:
a. For the new quasi-steady situation (existing just after the fast major transients die away), there is constant pressure and temperature on the secondary side.
b. Scale exists. This is apparently more conservative than no-scale (and also more consistent with reactor assumptions). However; the no-scale situation will also be examined:
c. The vaporizer dominates the steam generator and the inlet, outlet, and mean temperatures of the steam generator are those of the vaporizer.
d. The effective primary fluid temperature is the mean temperature $\left(440.8^{\circ} \mathrm{F}\right)$ during the early part of the transient phase. However, to obtain the new quasi-steady state the $10 g$ mean ΔT will be used.

The following relationships exist:
e. The film ΔT (primary fluid) varies directly with P and inversely with $G^{.8}$.
f. Metal and scale ΔT 's vary directly with power.
g. Boiled ΔT varies directly with generated power to and exponent of 0.413 .

2. Thermal Resistance Components

Looking at the comparisons in Appendix A, we can build up a table of percentages of total temperature drop, and taking the total at $59^{\circ} \mathrm{F}$ (with scale) we can obtain a quantity to be assigned as the contribution from each resistance to heat flow.

	Percentages	
Computed	Alcoa	Assigned s
	Assigned	

Film	19.3%	19.1%	19%	$11.2^{\circ} \mathrm{F}$
Metal	46.4	45.1	43	25.4
Scale	$-\ldots$	21.9	19	11.2
Boil	25.0	13.9	19	11.2
Total 90.7%	100.0%	100%	$59.0^{\circ} \mathrm{F}$	

3. Temperature Drops for Decreasing Power and Flow
a. We determine $\Delta T^{\prime} s$ (with scale) as follows:
$-89-$
$\Delta T=$ Total $=$ Film + Metal \& Scale + Boiling
Effective
$\Delta \mathrm{T}$ at $\quad=59=11.2+36.6+11.2$
Start
and for new quasi-steady state, with scale,
$\log -\operatorname{mean} \Delta T=(\Delta T \leqq 59)=\frac{11.2 P}{G^{0.8}}+36.6+11.2 P^{4.13}$
b. For the case without scale, we will assume that the primary loop situation is the same as that with scale, and that the pressure in secondary loop is kept higher (by throttle) thus giving the same heat flow at a lower ΔT. (Raising the pressure in secondary loop raises $T_{\text {sat }}{ }^{\text {. }}$)
c. The above assumption results in the following relationship:

$$
\begin{aligned}
\text { Total } \Delta T & =\text { Film }+ \text { Metal }+ \text { Boiling } \\
L M \Delta T & =\frac{11.2 P}{G^{.8}}+25.4 P+11.2 P^{.413}
\end{aligned}
$$

where log-mean $\Delta T=47.8^{\circ} F$, initial ΔT.
d. Numerically, the no-scale assumption has the following effect. The Alco-assumed scale resistance for steam generator tubes was 3×10^{-4} (equivalent of .0036 inches with $k=1$ Btu/hr-ft- ${ }^{\circ}$ F). This amounted to 19% of the total thermal
resistance in the evaporator $\left(11.2{ }^{\circ} \mathrm{F}\right.$ out of total $\Delta \mathrm{T}=59^{\circ}$). The steam will thus be generated at $393^{\circ} \mathrm{F}$ before scale has formed, instead of at $382^{\circ} \mathrm{F}$. Therefore the start-up powerplant will produce 230 psia steam which will be expected to drop gradually to 200 psia on formation of scale with the assumed resistance.

4. Power-Flow Relationships to Satisfy Steam Generator

Conditions

An indirect calculation is necessary to determine the relationship between P and G imposed by the heat exchanger. The complication is introduced by the necessity of considering the log-mean temp difference in place of an arithmetic mean.
a. For the scale condition:

$$
\log -\text { mean } \Delta T=\frac{\Delta T_{1}-\Delta T_{2}}{\ln \frac{\Delta T_{1}}{\Delta T_{2}}}=\frac{T_{1}-T_{2}}{\ln \frac{T_{1}-382}{T_{2}-382}}
$$

$$
\text { (since. } \Delta \mathrm{T}_{1}=\mathrm{T}_{1}-382, \Delta \mathrm{~T}_{2}=\mathrm{T}_{2}-382 \text {) }
$$

Also, log-mean $\Delta T=\frac{11.2 \mathrm{P}}{\mathrm{G}^{.8}}+36.6 \mathrm{P}+11.2 \mathrm{P} .413$
b. Other relationships permitting elimination of the unknown T's are

$$
\begin{aligned}
& \frac{\mathrm{T}_{1}+\mathrm{T}_{2}}{2}=441^{\circ} \mathrm{F} \\
& \frac{\Delta \mathrm{~T}_{1}+\Delta \mathrm{T}_{2}}{2}=59^{\circ} \mathrm{F}
\end{aligned}
$$

$$
P=\left(\frac{T_{1}-T_{2}}{18}\right) G
$$

c. Elfminating $\mathrm{T}^{\prime} \mathrm{s}$ by this means, one obtains (letting $\mathrm{P} / \mathrm{G}=\mathrm{x}$)

$$
\frac{18 \mathrm{x}}{\ln \frac{6.55+x}{6.55-x}}=11.2 \mathrm{P}^{.2} \mathrm{x}^{.8}+36.6 \mathrm{P}+11.2 \mathrm{P}^{.413}
$$

which, by trial solution, yeilds the values in the first half of the following table, for the scale case.
d. The corresponding relationships for the no scale case are:

$$
\log -\text { mean } \Delta \mathrm{T}=\frac{\mathrm{T}_{1}-\mathrm{T}_{2}}{\ln \frac{\mathrm{~T}_{1}-393.2}{\mathrm{~T}_{2}-393.2}}
$$

since $\Delta \mathrm{T}_{1}=\mathrm{T}_{1}-393.2, \Delta \mathrm{~T}_{2}=\mathrm{T}_{2}-393.2$
$\log -$ mean $\Delta T=\frac{11.2 P}{G^{.8}}+25.4 P+11.2 \mathrm{P}^{.413}$
$\frac{\Delta T_{1}+\Delta T_{2}}{2}=47.8^{\circ} \mathrm{F}$
$P=\left(\frac{T_{1}-T_{2}}{18}\right) G$, as before.
The equation yielding P vs G (letting $F / G=x$) is now

$$
\ln \frac{18 \mathrm{x}}{5.31+x} 5=11.2 \mathrm{P}^{.2} x^{.8}+25.4 \mathrm{P}+11.2 \mathrm{P}^{.413}
$$

whose results are tabulated in the second half of the table below.
e. Heat Exchanger Power-vs-Flow Relationships

| | Scale | | No Scale |
| :---: | :---: | :---: | :---: | :---: |
| P | G | P | G |
| 1.000 | 1.000 | 1.000 | 1.000 |
| .775 | .388 | .690 | .345 |
| .580 | .193 | .440 | .147 |
| .405 | .101 | .363 | .104 |

APPENDIX E - DECREASE IN FLOW AFTER PUMP FAILURE
Contents Page

1. Assumptions 95
2. Conversion of Kinetic Energy to Friction Work 95
3. Integration of Decreasing-Flow Relationship 97
4. Evaluation of Constants 98
5. Combination of Coasting and Thermal-Siphoning Effects 99

1. Assumptions

a. Ignore thermal siphoning (until about 8 sec . after pump failure).
b. Also ignore KE of pump (more conservative, particularly initially, and certainly easier).
c. After pump fails, the flow decreases while the kinetic energy of the water is being converted into work of friction
2. Conversion of Kinetic Energy to Friction Work
a. For each part of the hydraulic circuit

$$
K E=M v^{2} / 2=\frac{A L \cdot \rho v^{2}}{2 g} \quad f t \text { lb where } v \text { is in } f t / s e c \text { and }
$$

$$
A=\text { Flow cross-sectional area of pipe or component }
$$

b. Rate at which $K E$ is being turned into friction work

$$
\frac{d K E}{d t}=\frac{2 M v}{2} \quad \frac{d v}{d t}=\frac{A L_{p} v}{g} \quad \frac{d v}{d t} \quad f t-1 b / s e c
$$

c. Similarly the rate of work loss due to friction, $\frac{d K E}{d t}=-H p A v \quad f t-1 b / s e c$ $\therefore \Sigma L\left(\frac{V A \rho}{g}\right) \frac{d v}{d t}=-\Sigma H(A \rho v)$
d. However (ADv) is constant around circuit, at any one time, water being considered incompressible, and ignoring small local boiling for the nonce.

$$
\therefore \quad \Sigma \frac{L(A \rho v)}{g} \frac{d v}{d t}=-\Sigma H
$$

e. However for each component,

$$
\begin{aligned}
& v=v_{0} G \quad \text { and } H=B G^{1.8 * *} \\
& \left(\text { or } \frac{d v}{d t}=v_{0} \frac{d G}{d t}\right. \text {) }
\end{aligned}
$$

Where v_{0} and B are constants peculiar to each component (see Appendices A and B) and G is normalized flow or $F / 4000$. f. $\therefore \frac{1}{g} \frac{d G}{d t} \Sigma L v_{o}=-G^{1.8} \quad \Sigma B$
and

$$
\frac{\Sigma \Sigma v_{o}}{g \Sigma B} \quad \frac{d G}{\mathrm{G}^{1.8}}=-\mathrm{dt}
$$

** For turbulent flow in all components or down to $G=.0207$ ($\mathrm{F}=82.7$). Thereafter, for component affected, $\mathrm{H}=\mathrm{CG}^{1.0}$.
3. Integration of Decreasing-Flow Relationships
a.
$\frac{\Sigma L v_{0}}{g \Sigma B_{B}}$

$$
\frac{\Sigma L v_{0}}{g \Sigma B} \quad\left[\begin{array}{ll}
\left(\frac{-1}{.8}\right) & \left(\frac{1}{G .8}-1\right)
\end{array}\right]=-t
$$

$\frac{d G}{G^{1.8}}=-\int_{0}^{t}$
$d t$
or

$$
a\left[\begin{array}{cc}
\frac{1}{G^{.8}} & -1
\end{array}\right]=t \text {, where } a=\frac{\Sigma L v_{0}}{.8 g \Sigma B}
$$

b. Transposing,

$$
\frac{1}{G^{.8}}=\frac{t}{a}+1
$$

or

$$
G^{.8}=\frac{a}{t+a}
$$

where

$$
a=\frac{\sum L v_{0}}{.8 g \Sigma B} \sec
$$

and $B^{\prime} s$ are constants which give proper H at $G=1$
L's are effective lengths of components for K. E.
$\mathbf{v}_{0}^{\prime \prime}$ s are component velocities at $G=1$.

4. Evaluation of Constants

a. Ignoring $K E$ in reactor, other than that due to flow in core, we tabulate:

b. $a=\frac{\Sigma L v_{0}}{. \operatorname{sg\Sigma B}}$

$$
=\frac{603}{(.8)(32.2)(23.0)}=1.016
$$

Use $a=1.02$.

$$
G=\left(\frac{1.02}{t+1.02}\right)^{1.25} \quad(0 \leq t \leq 8 \mathrm{sec})
$$

c. The free-convection flow predominates for $t>8 \mathrm{sec}$; see Appendix C .
5. Combination of Coasting and Thermal Siphoning Effects

For $7<t<11 \mathrm{sec}$, a more exact relationship connecting flow and power is obtained by combining item $2 f$ (above) with the equations of Appendix C (sections 3 and 4):

$$
\begin{aligned}
& \text { Coasting: }-\frac{\sum L v_{0}}{g} \mathrm{G}=\mathrm{H}_{0} G^{1.8} \\
& \text { Convection: } \frac{.023 \times 3.41 \times 10^{7}}{\rho_{\mathrm{av}} \mathrm{~W}_{\mathrm{O}} \mathrm{c}_{\mathrm{p}}} \mathrm{~L}^{\mathrm{PG}} \mathrm{PG}^{-1}=\mathrm{H}_{0} \mathrm{G}^{1.8}
\end{aligned}
$$

Adding these effects and inserting constants,

$$
168 \mathrm{G}+206 \mathrm{G}^{1.8}-\mathrm{P} / \mathrm{G}=0
$$

Contents Page

1. Fuel Plate Temperatures 101
2. Water Temperatures 105
3. Power and Reactivity Relationships 107
a. Prompt Neutrons 107
b. Delayed Neutrons and Precursors 112
4. Variation of Steam Generator Outlet Temperature 113
5. Inlet Water Temperature to the Reactor 115
6. Constants for the Numerical Integration 120
7. Fuel Plate Temperatures
a. The derivation can be handled more easily using actual power P^{\prime}, in Btu/sec rather than the normalized power, P.
b. Rate
Rate
Heat going to raise heat $=$ heat + the temperature of delivered transferred the fuel element.
c. $P^{\prime}=c_{6} P=A U\left(T_{f}-T\right) \quad+W_{f} c_{f} \dot{\underline{r}}_{f}$
d. Relative to changes in T_{f}, P and T can be considered constant and h can be obtained using an average G.
e. $\left(\frac{P^{\prime}}{w_{f} c_{f}}+\frac{A U T}{w_{f} c_{f}}\right) \quad-\quad \frac{A U}{W_{f} c_{f}} T_{f}=\dot{T}_{f}$
where the first two terms are constant.
f. The above is of the form:

$$
A-B T_{f}=\dot{T}_{f}
$$

and has the solution of form:
$T_{f}=\frac{A}{B}-c e^{-B t}$
where c must satisfy boundary condition that

$$
\mathbf{T}_{\mathbf{f}}=\mathbf{T}_{\mathbf{f}_{\mathbf{o}}} @ \mathbf{t}=0
$$

so $c=\left(\frac{A}{B}-T_{f_{0}}\right)$, and $-c=\left(T_{f_{0}}-\frac{A}{B}\right)$
g. Therefore:

$$
\begin{aligned}
& T_{f}=\left(T_{f}-\frac{A}{B}\right) e^{-B t}+\frac{A}{B} \\
& \frac{A}{B}=\left(\frac{P^{\prime}}{A U}+T\right)
\end{aligned}
$$

h. $T_{f}-\frac{A}{B}=T_{f}-\frac{P^{\prime}}{A U}-T$

1. Changing coefficients for convenience of computing sheet

$$
T_{f}=\left(T_{f_{0}}-\frac{A}{B}\right) e^{-B t}+\frac{A}{B}
$$

becomes

$$
T_{f_{i+1}}=\left(T_{f_{i}}-\frac{P_{i}}{A U_{i}}-T_{i}\right) e^{-\Delta t_{i} / \tau_{f_{i}}+\frac{P_{i}}{A U_{i}}+T_{i}}
$$

j. Becomes

$$
\begin{aligned}
& T_{f_{i, 1}}=\left(\frac{P_{i}}{A U_{i}}+T_{i}\right)-\left[\frac{P_{i}^{\prime}}{A U_{i}}-\left(T_{f_{i}}-T_{i}\right)\right] e^{\Delta t_{i} / \tau_{f_{i}}} \\
& =Y_{i}-\left[Y_{i}-T_{f_{i}}\right] e^{-\Delta t_{i} / \tau_{f_{i}}}
\end{aligned}
$$

$$
\text { where } \dot{Y}_{i}=\left(\frac{P_{i}^{\prime}}{A U_{i}}+T_{i}\right)
$$

k. However $\frac{P^{\prime}}{P_{0}^{\prime}}=P$

$$
\text { so } P^{\prime}=P P_{0}^{\prime}=9472 P
$$

1. So $Y_{i}=\left(\frac{9472}{A} \frac{P_{1}}{U_{1}}+T_{i}\right)$
or calling $\frac{9472}{A}=\frac{9472}{611.1}=c_{7}$
$Y_{i}=\left(c_{7} \frac{P_{i}}{U_{i}}+T_{i}\right)$
where $c_{7}=15.5$
m. The effective $T_{f_{0}}$ is obtained as follows:

$$
T_{f_{0}}=T_{0}+\Delta T_{0}
$$

Total $\Delta T=\Delta T$ through film $+\Delta T$ through scale.
and $\frac{Q_{0}}{A}=h \Delta T_{1}=U_{s} \Delta T_{2}$
so $\Delta T_{0}=\frac{Q_{0}}{A h}+\frac{Q_{0}}{A U_{8}}$
and $T_{f_{0}}=T_{0}+\frac{Q_{0}}{A h}+\frac{Q_{0}}{A U_{s}}$
$T_{f_{0}}=T_{0}+\frac{Q_{0}}{A U}$
where

$$
\begin{aligned}
U & =\frac{1}{\frac{1}{h}+c_{8}} \quad c_{8}=\frac{1}{U_{8}} \\
& =\frac{1}{\frac{1}{h_{0} G_{1}} 0.8+c_{8}}
\end{aligned}
$$

n. This gives as a final result:

$$
\begin{aligned}
& T_{f_{i+1}}=Y_{i}-\left[Y_{i}-T_{f_{i}}\right] e^{-\Delta t_{1} / \tau_{f_{i}}} \\
& \text { where } Y_{i}=\left(c_{7} \frac{P_{i}}{U_{i}}+T_{i}\right) \\
& \text { and } U_{i}=\frac{1}{h_{0} G_{i}{ }^{0.8}+c_{8}}
\end{aligned}
$$

o. Numerically, values are as follows:

$$
\begin{aligned}
& \mathbf{T}_{0}=440.8^{0} \mathrm{~F} \\
& \mathrm{P}_{0}=1 \\
& \mathrm{G}_{0}=1 \\
& \mathrm{~h}_{0}=\frac{2570}{3600}=0.714 \mathrm{Btu} / \mathrm{sec}-{ }^{O_{F}}-\mathrm{ft}^{2} \\
& \mathrm{U}_{\mathbf{8}}=\frac{1200}{3600}=\frac{1}{3}=\frac{1}{\mathbf{c}_{8}} \mathrm{Btu} / \mathrm{sec}-{ }^{0} \mathrm{~F}-\mathrm{ft}^{2} \\
& \mathrm{c}_{7}=15.5
\end{aligned}
$$

This permits us to obtain

$$
u_{1}=\frac{1}{0.714 G_{1}{ }^{0.8}+3}
$$

$$
U_{0}=\frac{1}{4.4007}=0.2272 \mathrm{Btu} / \mathrm{sec}-\mathrm{ft}^{2}-{ }^{\circ} \mathrm{F}
$$

$$
Y_{i}=\left(15.5 \frac{P_{i}}{U_{i}}+T_{i}\right)
$$

$$
\begin{aligned}
\mathrm{T}_{f_{0}} & =440.8+\frac{34.1 \times 10^{6}}{(611.1)(2570)}+\frac{34.1 \times 10^{6}}{(611.1)(1200)} \\
& =440.8+21.7+46.4 \\
T_{f_{0}} & =508.9^{0} \mathrm{~F} \\
T_{f_{i}} & =\frac{W_{f} c_{f}}{A U_{i}}=\frac{42}{A U_{i}} \\
\frac{1}{f_{i}} & =\frac{A U_{i}}{W_{f} c_{f}}=\frac{611.1}{42} U_{i}=1.4 .55 U_{i}
\end{aligned}
$$

2. Hater Temperatures

a. \begin{tabular}{l}
Rate of

Heat to to

water

$=\quad$

Rate of heat

Carried

away

$+$

Rate of heat

going to raise

average water temp.
\end{tabular}.

b. $A U\left(T_{f}-T\right)=c_{p} G M_{0}\left(T_{2}-T_{1}\right)+w c_{p} T$
c. $\left(T_{2}-T_{1}\right)=2\left(T-T_{1}\right)$ (approximately)
d. $\frac{A U}{W C_{p}}\left(T_{f}-T\right)-\frac{2 G M_{0}}{W}\left(T-T_{1}\right)=T$
e. or $\frac{1}{\tau_{1}}\left(T_{f}-T\right)-\frac{1}{\tau_{2}}\left(T-T_{1}\right)=\dot{T}$
where $\frac{1}{\gamma_{1}}=\frac{A U}{W_{p}}, \frac{1}{\tau_{2}}=\frac{2 \mathrm{GM}_{\mathrm{O}}}{\mathrm{w}}$
f. T_{i} is constant for the first 11 seconds T_{f} average can be used We assume that T varies slowly enough so that the exponential need not be used.

$$
\begin{aligned}
& \quad T_{i+1}=T_{i}+\frac{\Delta t_{i}}{\tau_{1}}\left(T_{f_{\text {avg }}}-T_{i}\right)-\frac{t_{i}}{\Delta \tau_{2_{i}}}\left(T_{i}-T_{1}\right) \\
& \text { g. } \frac{1}{\tau_{2}}=\frac{2 \mathrm{GM}_{0}}{w} \\
& \text { and since } G_{0}=1 \\
& \quad\left(\frac{1}{\tau_{2}}\right)_{i}=\frac{\left(2 M_{0}\right)}{W} G_{i}=\left(\frac{1}{\tau_{2}}\right)_{0} G_{i} \\
& \text { h. }\left(\frac{1}{\tau_{1}}\right)_{i}=\because\left(\frac{A}{W c_{p}}\right) U_{i}
\end{aligned}
$$

3. Power and Reactivity Relationships
a. For Prompt Neutrons:

| i. Rate |
| :--- | :--- |
| Prod. |
| Neutrons |\quad| Loss |
| :--- |
| Neutrons |$=$| Rate |
| :--- |
| Change |
| Neutron |
| Density |

ii. But:

Rate
Loss $=\frac{n}{l^{*}} \quad n=$ Neutron Density
Neutrons ℓ^{\star}
$-\ell^{*}=$ Mean Lifetime
iii. And:
$\begin{aligned} & \text { Rate } \\ & \text { Prod. }\end{aligned}=\begin{aligned} & \text { Rate } \\ & \text { Prod. } \\ & \text { Prompt }\end{aligned}+\begin{aligned} & \text { Rate Prod. from } \\ & \text { Delayed Neutron } \\ & \text { Precursors }\end{aligned}$
(We neglect a source term. Any sources if present are negligible.)
iv. Where:

$$
\begin{array}{ll}
\text { Rate } & \\
\text { Prod. } & C_{1}
\end{array}=\begin{aligned}
& \text { Density of Delayed } \\
& \text { Delayed }
\end{aligned} \quad \begin{array}{ll}
\text { Neutron Precursors }
\end{array}
$$

(We assume one effective group of delayed neutrons since incremental changes in multiplication are sma11)
v. Combining:
$\frac{\mathrm{n}}{\ell^{\star}} \mathrm{K}(1-\beta)+\mathrm{C}_{1} \lambda-\frac{\mathrm{n}}{\ell^{\star}}=\dot{n}$
vi. Rearranging
$\frac{\mathrm{n}}{\ell^{\star}} K(1-\beta)-1+c_{1} \lambda=\dot{n}$
vii. For first l/loth second following a step change in K, a useful approximation is to take delayed neutron contribution constant. $1 / 10$ th second is a small fraction of half life of shortest half life delayed neutrons. Also, since change in K here is expected to be more of a ramp function, this assumption should be sufficiently accurate for even longer intervals. If we make this approximation, then $C_{1} \lambda$ is constant over interval and is equal to $\frac{n_{0}}{l^{\star}}$ over first interval.
viii. A usual approximation is to take $K=1+\Delta K$, as is usually done in kinetic analyses.
then

$$
\begin{aligned}
K(1-\beta) & =(1-\beta)(1+\Delta K) \\
& =1+\Delta K-\beta-\beta \Delta K
\end{aligned}
$$

and if ΔK is small, we can ignore $\beta \Delta K$, as is usually done in kinetic analyses.
ix. Then

$$
\frac{n}{l^{*}}(\Delta K-\beta)+C_{1} \lambda=\dot{n}
$$

x. If $P=c_{2} n$
and $D=c_{2} C_{1}$
and if we multiply through by c_{2},
we obtain,
$\frac{c_{2} n}{l^{*}}(\Delta K-\beta)+c_{2} c_{1} \lambda=\left(c_{2} \dot{n}\right)$
$\frac{P}{l^{*}} \quad(\Delta K-\beta)+D \lambda=\dot{P}$

Where, as before, $\Delta K=c_{3} \Delta T$
$x i$. Over any sufficiently small interval of $t i m e, \Delta T$ and D can be taken as constant and equations solved for P.
xii. Letting $\frac{{ }^{c} 3^{\Delta T}-\beta}{l^{*}}=c_{4}$ (A negative number) and $D \lambda=c_{5}$

$$
c_{4} P+c_{5}=\dot{\mathrm{P}}
$$

xiii. Solution is

$$
P=\left(P_{0}+\frac{c_{5}}{c_{4}}\right) e^{c_{4} t}-\frac{c_{5}}{c_{4}}
$$

where the P_{0} is the value of P at the start of the interval.
xiv. Or as set up for time intervals,

$x v$. Now $\frac{c_{5}}{c_{4}}$ is negative and of the same general order of magnitude as P, so that $P_{i}+\left(\frac{C_{5}}{C_{4}}\right)_{i}$ is certainly smaller than P_{i}.
xvi. Since, for this problem, ΔT is always positive,
c_{4} must be less than $-\frac{\beta}{l^{*}}$ and
$\frac{\beta}{\ell^{*}}=\frac{-75}{2}=-37.5$
so that for Δt 's as large as .1 sec (or $c_{4} \Delta t$ as
large as 37.5)

$$
\left[P_{i}+\left(\frac{c_{5}}{c_{4}}\right)_{1}\right] e^{c_{4} \Delta t_{1}} \text { is negligibly small. }
$$

xvii. Actually, even for $\Delta t=.01$, the expression turns out to be very small, thus indicating that P follows ΔT very closely and in determining P at the end of the time interval, indicating in turn that it is value of ΔT at end of time interval which should be used. Winile it is really the average D over the period which should be used, D changes an order of magnitude slower than P, initially, so that this type of iteration is not needed.

$$
\begin{aligned}
P_{i+1} & =-\frac{c_{5}}{c_{4}} \\
& =+\frac{D_{i} \lambda l^{*}}{c_{3} \Delta T_{i}+1-\beta}
\end{aligned}
$$

xviii. Another way of looking at it is to consider that the power at the end of the period is equal to the delayed neutron contribution at beginning of period multiplied by two conversion ratios, one of which is the ratio.

> Precursors which become neutrons
> Neutrons which become precursors
> plus neutron tmbalance

The other of which is ratio of lifetimes of neutrons and precursors or $\left(\frac{l^{*}}{1 / \lambda}\right)$. This gives

$$
\mathrm{D}_{1}\left[\frac{1}{1+\Delta K-\beta}\right]\left[\frac{l^{*}}{(1 / \lambda)}\right]
$$

b. Delayed Neutrons and Precursors

1. | Rate of | |
| :--- | :--- |
| Precursors | Rate of |
| Formed | Precursors |
| Lost | |$=$| Rate Change in |
| :--- |
| No. of |
| Precursors |

or

$$
\frac{n}{\ell^{*}} \beta K-c_{1} \lambda=\dot{c}_{1}
$$

ii. Again if we set $K=1+\Delta K$
$\frac{n}{\ell^{*}} \beta(1+\Delta K)-c_{1} \lambda=\dot{C}_{1}$
and if ΔK is small, $\beta \Delta K$ can be ignored, so
$\frac{n}{l^{*}} \beta-c_{1} \lambda=\dot{c}_{1}$
iii. Again multiplying through by c_{2}, where $P=c_{2} n$ and $D=C_{2} C_{1}$
$\frac{P}{l^{*}} \beta-D \lambda=\dot{D}$
iv. Variation in D is very slow and is controlled by P so that it is possible and easier to linearize.
v. $\quad \therefore \Delta D=\left[P\left(\frac{\beta}{l^{\star}}\right)-D \lambda\right] \Delta t\left(\right.$ where $\left.P=\frac{P_{1}+P_{1+1}}{2}\right)$
and $D_{i+1}=D_{i}+P\left(\beta / \ell^{*}\right)-D \lambda \Delta t_{i}$

4. Variation of Steam Generator Outlet Temperature

a. The inlet temperature $\left(\mathrm{T}_{3}\right)$ of the steam generator does not depart appreciably from $450^{\circ} \mathrm{F}$ until $\mathrm{t}=1.6 \mathrm{sec}$, at which time it has risen $0.16^{\circ} \mathrm{F}$. This is the "slug" which left the reactor at $t=0.1 \mathrm{sec}$, and which will Leave the steam generator at $t=11.7 \mathrm{sec}$. Therefore, we may use $T_{3}=450^{\circ} \mathrm{F}$ for the portion of the transient flow period which is of primary interest.
b. The time-variation of outlet temperature (T_{4}) of the steam generator is determined as follows: (cf App C:5b)
$\frac{1}{U} \frac{d T}{T-T_{s}}=\frac{A d x}{W c_{p} L}$
c. Ignoring the variation of boiling resistance: (cf App. D, sec's 4, 5)
$\frac{10^{4}}{U}=2.71 \mathrm{G}^{-.8}+11.55$
$=2.66 t+14.26$
$A=836 \mathrm{ft}^{2}, \mathbf{c}_{\mathrm{p}}=1.115 \frac{\mathrm{Btu}}{1 \mathrm{~b}-\mathrm{O}_{\mathrm{F}}}, \mathrm{L}=13.0 \mathrm{ft}$.
$W=W_{O} G=1.66 \times 10^{6} \quad G$
d. Letting $d x=v d t=v_{0}$ Gdt (where $v_{0}=11.65 \mathrm{ft} / \mathrm{sec}$ in evaporator tubes)
e. $(2.66 t+14.26) \frac{d T}{T-T_{S}}=\frac{-836 \times 11.65 \mathrm{G}}{1.115 \times 13.0 \times 1.66 \times 10^{6} \mathrm{G}} \mathrm{dt}$.
f. First we integrate over a time range during which the "slug" leaving the steam generator had entered before the time of pump failure, and had a temperature T_{0} at $t=0$ (from curve of App.C).
g. $\int_{T_{0}}^{T_{4}} \frac{d T}{T-T_{s}}=-1.525 \int_{0}^{t_{4}} \frac{d t}{t+5.36}\left(0<t_{4}<2.64 \mathrm{sec}\right)$

$$
\begin{aligned}
& \ln \frac{T_{0}-T_{s}}{T_{4}-T_{s}}=1.525 \ln \left(\frac{t_{4}+5.36}{5.36}\right) \\
& \frac{T_{0}-T_{s}}{T_{4}-T_{s}}=\left(\frac{t_{4}+5.36}{5.36}\right)^{1.525}\left(0<t_{4}<2.64 \mathrm{sec}\right)
\end{aligned}
$$

h. For "slugs" entering the steam generator after pump failure (at times $0<t_{3}<1.6 \mathrm{sec}$), the initial temperature to be used in evaluating the definite integral will be $\mathrm{T}_{3}=450^{\circ} \mathrm{F}$.
i. $\int_{T_{3}}^{T_{4}} \frac{d T}{T-T_{3}}=-1.525 \int_{t_{3}}^{t_{4}} \frac{d t}{t+5.36}\left(0<t_{3}<1.6\right)$

$$
\frac{T_{3}-T_{s}}{T_{4}-T_{s}}=\left[\frac{t_{4}+5.36}{t_{3}+5.36}\right] \quad 1.525 \quad\left(0<t_{3}<1.6\right)
$$

where t_{4}, the exit time, is determined (cf App ${ }^{G}$) for each entry time t_{3} by $\left.t_{4}=\frac{1.02+t_{3}}{\left[1-.272\left(1.02+t_{3}\right)^{.25}\right.}\right]^{4}-1.02$

The following table lists some of the values for the outlet steam generator temperature as a function of the time following the pump failure. The results are plotted on Curve Sheet 10.
Enter Leave Initial

$\left.\begin{array}{lccccc}\mathrm{t}_{3} & \mathrm{t}_{4} & \mathrm{~T}_{0} & \mathrm{~T}_{0}-\mathrm{T}_{\mathbf{s}} & & \mathrm{T}_{4}-\mathrm{T}_{5}\end{array}\right]$| T_{4} |
| :--- |
| \ldots |

5. Inlet Water Temperature to the Reactor

Since the water flow rate is dropping initially, the steam generator outlet temperatures will be spread over a much longer time interval than is used in the above calculation. At the end of eight seconds,

convection becomes the driving force and flow becomes almost constant ($G=0.0666$).
b. Distance from steam generator to reactor $=24.2 \mathrm{ft}$.
(c. $s=\frac{12.6(1.0261}{0.25}\left[\frac{1}{\left(a+t_{1}\right)^{0.25}}-\frac{1}{\left(a+t_{2}\right)^{0.25}}\right]$
$=51.6\left[\frac{1}{\left(a+t_{1}\right)^{0.25}}-0.577\right]=51.6\left[\frac{1}{(a+t)^{0.25}}-0.577\right]$
d. After $8 \mathrm{sec}, \mathrm{v}=0.846 \mathrm{ft} / \mathrm{sec}$
e. Total time to reactor $=8+\frac{24.2-s}{0.846}$

t_{1}	${ }^{a+t_{1}}$	$\frac{1}{\left(a+t_{1}\right)^{0.25}}$	$\frac{1}{\left(a+t_{1}\right)}{ }^{0.25}-0.577$	s	$24.2-\mathrm{s}$	t_{c}	t_{T}
0	1.02	0.995	0.418	21.55	2.65	3.09	11.1
0.4	1.42	0.916	0.339	17.48	6.72	7.84	15.8
0.8	1.82	0.861	0.284	14.65	9.55	11.16	19.2
1.2	2.22	0.819	0.242	12.48	11.72	13.68	21.7
1.6	2.62	0.786	0.209	10.78	13.42	15.67	23.4
2.0	3.02	0.759	0.182	9.39	14.81	17.29	25.3
2.4	3.42	0.735	0.158	8.15	16.05	18.73	26.7
2.6	3.62	0.725	0.148	7.63	16.57	19.34	27.4
3.14	4.16	0.700	0.123	6.34	17.86	20.85	28.9
3.65	4.67	0.680	0.103	5.31	18.89	22.05	30.1
4.20	5.22	0.661	0.084	4.33	19.87	23.18	31.2
4.76	5.76	0.645	0.068	3.51	20.69	24.14	32.2
5.39	6.41	0.628	0.051	2.63	21.57	25.2	33.2
6.01	7.03	0.610	0.033	1.70	22.50	26.3	34.3
6.65	7.67	0.601	0.024	1.24	22.96	26.8	34.8
7.27	8.29	0.589	0.012	0.62	23.58	27.5	35.5
7.93	8.95	0.578	0.001	0.05	24.14	28.2	36.2

The results of this table are plotted on Curve Sheet 11.

6. Constants for Numerical Integration

CORE:

$$
\begin{aligned}
& A=611.1 \mathrm{ft}^{2} \\
& c_{p}=1.115 \mathrm{Btu} / 1 b-{ }^{\circ} \mathrm{F} \\
& D_{0}=4688 \\
& F_{0}=4000 \mathrm{CPM} \\
& G_{0}=\frac{F_{0}}{4000}=1 \\
& M_{0}=4.611 \times 10^{2} 1 \mathrm{~b} / \mathrm{sec} \\
& \ell^{*}=0.2 \times 10^{-4} \mathrm{sec} \\
& P_{0}=1 \\
& F^{\prime}=9472 \mathrm{Btu} / \mathrm{sec}=\mathrm{c}_{6} \mathrm{P}_{0} \\
& \mathrm{~T}_{\mathrm{O}}=4408^{\circ} \mathrm{F} \\
& \mathrm{~T}_{\mathrm{O}_{1}}=431.6^{\circ} \mathrm{F} \\
& T_{O_{2}}=450 .{ }^{\circ} \mathrm{F} \\
& \Delta T_{0}=\frac{\mathrm{P}^{\prime}}{\mathrm{AD}}=\frac{9472}{611.1(0.2272)}=68.2^{\circ}{ }_{F} \\
& \mathrm{~T}_{\mathrm{f}_{\mathrm{O}}}=\mathrm{T}_{\mathrm{o}}+\Delta \mathrm{T}_{\mathrm{O}}=509^{\circ} \mathrm{F} \\
& \mathrm{U}_{\mathrm{o}}=0.2272 \mathrm{Btu} / \mathrm{sec}-\mathrm{ft}^{2} \mathrm{O}_{\mathrm{F}} \\
& \mathrm{w}=189.8 \mathrm{lb} \\
& \mathbf{w}_{f} \mathbf{c}_{\mathrm{f}}=42 \mathrm{Btu} /{ }^{\circ} \mathrm{F}
\end{aligned}
$$

$$
\begin{aligned}
& B=75 . \times 10^{-4} \\
& \lambda=0.8 \mathrm{sec}^{-1} \\
& c_{3}=-2 \times 10^{-4}\left({ }^{\circ} \mathrm{F}\right)^{-1} \\
& c_{4}=\frac{c_{3} \Delta T-\beta}{\ell^{*}} \\
& \left(c_{4}\right)_{0}=-375 \mathrm{sec}^{-1} \\
& c_{5}=D \lambda \\
& \left(c_{5}\right)_{0}=375 \mathrm{sec}^{-1} \\
& c_{6}=9472 \mathrm{Btu} / \mathrm{sec} \\
& c_{7}=15.5 \mathrm{Btu} / \mathrm{sec}-\mathrm{ft}^{2} \\
& A / \mathrm{wc}_{\mathrm{p}}=2.89 \frac{\mathrm{ft}^{2}-\mathrm{O}_{\mathrm{F}}}{\mathrm{Btu}} \\
& \mathrm{~A} / \mathrm{w}_{\mathrm{f}} \mathrm{c}_{\mathrm{f}}=14.56 \frac{\mathrm{ft}^{2}-{ }^{\mathrm{O}} \mathrm{~F}}{\mathrm{Btu}} \\
& \left(1 / \tau_{f}\right)_{o}=\frac{A U}{W_{f}{ }_{f}}=3.306 \mathrm{sec}^{-1} \\
& \left(1 / \tau_{1}\right)_{0}=\frac{A U_{0}}{W C_{p}}=0.6565 \mathrm{sec}^{-1} \\
& \left(1 / \tau_{2}\right)_{0}=\frac{2 \mathrm{G}_{\mathrm{o}} \mathrm{M}_{0}}{\mathrm{w}}=4.869 \mathrm{sec}^{-1}
\end{aligned}
$$

APPENDIX G - TRANSPORT LAGS
Contents Page

1. Pipe Lengths 123
2. Flow vs. Time 124
a. Velocity-decay function 124
b. Integration for distance 125
c. Time by which certain distance will be traveled 125
3. Transport Lags for Particular Conditions 126
a. Time at which last normal-temp slug enters reactor 126
b. Time at which $419^{\circ} \mathbf{F}$ slug entérs reactor 126
c. Time at which last normal-temp slug enters steam generator 127
d. Time at which $451.2^{\circ} \mathrm{F}$ slug enters steam generator 127
4. Pipe Lengths

Listed below are approximations of actual line lengths from Alco drawing AEL-16. Data were taken from the plan view with corrections for changes in the elevation of the lines.
a. Steam Generator to \underline{Y} Joint
i. For pump closer to reactor:

From steam generator to C. L. of pump 25.6 in .
From C. L. of pump to Y joint $\frac{46.5}{72.1}$ in $=6.01 \mathrm{ft}$
ii. For pump farther from reactor:

From steam generator outlet to C. L.
of pump 32 in.
From C. L. of pump to Y joint $\quad \frac{96.3}{128.3} \mathrm{in}=10.69 \mathrm{ft}$
iii. Elevation corrections:

One 45° bend $\quad 15.5$ in.
One riser to pump
$\frac{38.0}{53.5} \quad$ in $=4.46 \mathrm{ft}$
b. \underline{Y} Joint to Reactor Inlet

From Y joint around bend 29.7 in
Along straight section to next bend 92.0
Approximate distance around bend 28.3
Straight section to reactor inlet $\quad \frac{14.4}{164.4} \quad$ in=13.70ft

> c. Reactor Outlet to Steam Generator
> From reactor outlet to bend 20.5 in
> Around bend
> From bend to steam generator inlet $\frac{65.6}{114.4} \mathrm{in}=9.53 \mathrm{ft}$.
> Minimum total pipe length $=6.01+4.46+13.70$ $+9.53=33.70 \mathrm{ft}$.
> Maximum total pipe length $=38.4 \mathrm{ft}$.
2. Flow vs. Time
a. Use the equation derived in appendix E :

$$
t=1.02\left[(4000 / F)^{.8}-1\right] \mathrm{sec}
$$

Eliminate F in this equation by using the relationsnip
$v=12.6(F / 4000) \mathrm{ft} / \mathrm{sec}$ (for piping).
and

$$
v=11.65(F / 4000) \mathrm{ft} / \mathrm{sec} \text { (within evaporator tubes) }
$$

For the former case, we obtain

$$
\begin{aligned}
& v(t)=\frac{12.6(1.02)^{1.25}}{(1.02+t)^{1.25}} \\
& v(t)=\frac{12.9}{(1.02+t)^{1.25}} \\
& v(t)=\frac{A}{(B+t)^{k}}
\end{aligned}
$$

$$
\text { where } \begin{aligned}
A= & 12.9 \text { for piping; } 11.94 \text { for steam gen; } \\
& 4.4 \text { for reactor } \\
B= & 1.02 \\
k= & 1.25
\end{aligned}
$$

b. The distance traveled by a "slug" of fluid between any times t_{1} and t_{2} (measured from instant of pump failure) will be

$$
\begin{aligned}
s_{t_{1}, t_{2}} & =\int_{t_{1}}^{t_{2}} \frac{A}{(B+t)^{k}} d t=-\frac{A}{k-1}\left[\frac{1}{\left(B+t_{2}\right)^{k-1}} \cdot \frac{1}{\left(B+t_{1}\right)^{k-1}}\right] \\
s_{t_{1}, t_{2}} & =\frac{A}{k-1}\left[\frac{1}{\left(B+t_{1}\right)^{k-1}}-\frac{1}{\left(B+t_{2}\right)^{k-1}}\right] \\
& =\frac{12.9}{0.25}\left[\frac{1}{\left(1.02+t_{1}\right)^{.25}}-\frac{1}{\left(1.02+t_{2}\right)^{.25}}\right]
\end{aligned}
$$

c. Starting at a time t_{1}, the time t_{2} by which an additional distance, s, will have been traveled is

$$
t_{2}=\frac{B+t_{1}}{\left[1-\frac{s(k-1)}{A}\left(B+t_{1}\right)^{k-1}\right]^{1 /(k-1)}} \div B
$$

$$
\frac{1.02+t_{1}}{\left[1-\frac{.25 s}{12.9}\left(1.02+t_{1}\right) .25\right]^{4}}-1.02
$$

These expressions should be used only up to $t_{2}=8 \mathrm{sec}$;

3. Transport Lags for Particular Conditions

a. The total pipe length from the steam generator outlet to the reactor inlet (through the nearer pump) is 24.2 ft . Taking $t_{1}=0$ and $t_{2}=8 \mathrm{sec}$, the distance a slug would travel in 8 sec is

$$
\begin{aligned}
{ }^{8_{0,8}} & =\frac{12.9}{0.25}\left[\frac{1}{(1.02)^{.25}}-\frac{1}{(9.02)^{.25}}\right] \\
& =51.6(.995-.577)=21.55 \mathrm{ft} .
\end{aligned}
$$

Considering $v=12.6 \times 0.067=0.846 / \mathrm{sec}$ for the remaining $2.65 \mathrm{ft} .$, the total time for this slug to travel from the steam generator to the reactor will be

$$
t=8.0+\frac{2.65}{.846}=11.14 \mathrm{sec}
$$

b. A similar calculation for a slug leaving the steam generator at $t_{i}=2.6 \mathrm{sec}\left(\right.$ temp. $\left.t_{4}=419^{\circ} \mathrm{F}\right)$ gives $s_{2.6,8.0}=\frac{12.9}{0.25}\left[\frac{1}{(3.62)^{.25}}-\frac{1}{(9.02)^{.25}}\right]$

$$
=51.6(.725-.576)=7.68 \mathrm{ft}
$$

Assuming free-convection flow at $0.846 \mathrm{ft} / \mathrm{sec}$ for the remaining 16.5 ft. , the total time from the instant of pump failure to reach the reactor is $t_{2}=8.0+\frac{16.5}{0.846}$ $=27.5 \mathrm{sec}$
c. Flow distance from reactor outlet to steam generator inlet is 9.53 ft . A slug leaving the reactor at t_{1} $=0$ would leave the steam generator at

$$
\begin{aligned}
t_{2} & =\frac{1.02}{\left[1-\frac{.25 \times 9.53}{12.9}(1.02) .25\right]^{4}-1.02} \\
& =\frac{1.02}{(1-.186)^{4}}-1.02 \\
t_{2} & =1.30 \mathrm{sec}
\end{aligned}
$$

d. Taking $t_{1}=0.2 \mathrm{sec}$ (by which time reactor outlet temperature has increased $1.2^{\circ} \mathrm{F}$) the time t_{2} (from pump failure) for this hotter "slug" to reach the steam generator will be

$$
\begin{aligned}
t_{2} & =\frac{1.02+0.20}{\left[1-\frac{.25 \times 9.53}{12.9}(1.22)^{.25}\right.}-1.02 \\
& =\frac{1.22}{(1-0.194)^{4}}-1.02
\end{aligned}
$$

APPENDIX H - MAXIMUM TEMPERATURES
Contents Page

1. General 130
2. Location of Maximum Metal Temperatures 133
3. Outlet Conditions from the Hottest Channel 137
4. Temperature Analysis of Central Flow Channel 139
5. Maximum Center Plate Temperatures 144
a. No-Scale Case 145
b. Cese With Scale 146

1. General

In setting up the constants for the analysis for the transient conditions of the pump failure problem, the figure for tie axial maximum-to-average heat flux was taken directly from the Hazards Summary Report of October 1955 to be 1.31:1. This value would indicate that the axial flux distribution is that of a chopped cosine. Consequently, all the constants for the transient relationships were set up using the entire fuel core length for the heated length of each plate. Recent information now indicates that the value listed in the Hazards Report was much too low. Instead of a cmopped cosine flux distribution, as was assumed, the flux distribution is instead closer to a cosine function plus a cero function on the upper end. It thus appears that an error was introduced into the numerical integration as something less than the actual fuel length should have been used. However, in view of the time and effort that would be required to make this correction, it does not appear feasible to do so, especially since the corrections are probably of second order.

In calculating maximum plate temperatures, however, the value for maximum-to-average flux becomes extremely
important. It was decided, therefore, to use the following assumptions to be consistent with the transient calculations:
a. The axial power (flux) distribution will be taken as a pure cosine function (maximum/average $=1.57: 1$)
b. The radial maximum-to-average power distribution will be taken to be bout 1.8:1.

These assumptions should be conservative as they should yield higher temperatures than taking a higher value for the axial distribution. By raising the radial maximum-to-average ratio, one assumes that more power is generated in the nottest or central channel than is tine case. Also, since there is some net steam generation near tine outlet of some of the central. fuel elements, the calculated temperatures will be high in this region since we have assumed that there is power production in that area where actually a zero power function will exist.

On the other hand, these calculations do not take into consideration the possible reduction in flow area due to a combinition of poor fuel-element tolerances, nor does it
consider the volume heating effect in the water film; however, these phenomena should not appreciably alter the results. Also there will be some decrease in flow through the central fuel elements due to the formation of steam and the corresponding increase in friction accompanying two-phase flow. This effect will be somewhat compensated by an increase in convection flow through these channels and In any case, should introduce relatively little error into the calculations, as the mixture leaving the hottest channel has a steam quality of less than ten per cent. Moreover, the introduction of steam voids in this portion of the reactor will inject a considerable amount of negative reactivity, which will cause a sharp decrease in power and alleviate the situation.

In no case is it conceivable in the analysis of the pump failure, that any cooling surface will enter the region of film boiling where burnout is likely to occur. Since the reactor will operate in the region of nucleate boiling following pump failure, the temperature at the wetted surface is not expected to exceed $600^{\circ} \mathrm{F}$.

2. Maximum Metal Temperatures

The problem of determining the location and magnitude of the maximum metal temperatures during the transient period before the new quasi steady state defies straightforward solution because there are too many variables. Rather than attempt an exact analytical solution of the problem it was decided, to use a different method of attack which should give conservative values.

The method is to take some time of exit, t_{2}, from the reactor, calculate the rime of entry, t_{1}, from the inertia and convective flow relationships; average the normalized flow, $G_{a v}$, over the period along with a linear average of the normalized power, P_{av}; and assuming steady-state flow conditions obtain the temperature profile of the hoctest channel. The temperatures thus obtained should be somewhat higher than the actual case because the linear average of the power is higher than the true average over the same time interval. The average outlet coolant temperature was checked at each interval and every case was found to be higher than that obtained from the numerical integration.

The next problem was to determine at what time and under what conditions during the transient period was the maximum
temperature obtained. Since the worst conditions will prevail approximately during that period where the ratio of power to coolant flow is a maximum, this ratio was calculated and is plotted in figure 12 on the following page. As can be seen from the figure, the maximum value of 5.9 for P / G was reached at an exit time of 12 seconds following the pump failure. The normalized flow and power conditions at this point were

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{av}}=0.4135 \\
& \mathrm{G}_{\mathrm{av}}=0.0701
\end{aligned}
$$

and these values were used in obtaining the temperature profiles of the central coolant channel. The data used for this grapin are tabulated in the table below.

Exit Time	Entry Time	P_{av}	Gav	$\mathrm{P}_{\mathrm{av}} / \mathrm{Gav}$
2	0.78	0.821	0.361	2.28
3	1.30	. 7425	. 251	2.96
4	1.80	. 6795	. 1938	3.445
6	2.70	. 586	. 1293	4.53
8	3.62	. 515	. 0973	5.29
9	4.08	. 4845	. 0866	5.59
10	4.62	. 458	. 0796	5.75
11	5.25	.4345	. 0742	5.86
12	5.92	.4135	. 0701	5.90
13	6.69	. 398	. 0676	5.89

	\square	+ ${ }^{\text {a }}$																													
$0 \stackrel{1}{2}$	Y	\square									1				$9 \times$																
															3 V	Sar															
un							\square									1											$\alpha \square$.	
																											1			\checkmark	
								\square				-]			\%					\square						1				
													-								-	-		\square			\cdots				
																								1.			\square			0	
	\cdots																													E	
													1																		
																										I				7	
	3											1		-												+				C	
	¢,																													-	
n																														$\bigcirc 1$	
	Ti:							+																						1	
	$0 \cdot$								-															.	-		\%			\square	
	E,																								-	-	-				
					\square							-		\square																71	
	4	1																													
		1												.												1				0	
																										\square				${ }^{+}$	
		\boldsymbol{T}																						-		-					
		Hex																													
																		\pm													
	7 ${ }^{1}$					\square		-						\because																c	
	-	cte		\cdots				-	7			,	7		\square											V					
												-			-											-					
												\square																		Til	
	4 4	4.												-											-		1				
	+4											-													F						
	W.										\bigcirc	4													T					-	
	-	1																												H	
	W	3										\cdots		\cdots																C	
	\square																										U			\%	
		\cdots															\cdots													C.	
	\cdots	- 3	\pm	4	4	"	+1		-		uin	4					CHe	H:								\square	Him			Lem^{2}	\%

3. Outlet Conditions From The Hottest Channel

For the highest surface temperatures, outlet time $=12$ seconds.

$$
\begin{aligned}
& P_{a v}=0.4135 \quad G_{a v}=0.0701 \\
& q_{c}=\int_{0}^{L} \quad Q_{O_{\max }} P_{a v} A_{c} \sin \frac{\pi x}{L} d x=\frac{2}{\pi} \quad Q_{O_{\max }} P_{a v} V_{c} \\
& Q_{\mathrm{O}_{\text {max }}}=\frac{34.13 \times 10^{6}(1728)}{(22)(2.5)(0.02)(800)} 2.845=1.907 \times 10^{8} \mathrm{Btu} / \mathrm{hr}-\mathrm{ft}^{3} \\
& q_{c}=\frac{2}{\pi}\left(1.907 \times 10^{8}\right)(0.4135)\left(\frac{1.1}{1728}\right)=31,940 \mathrm{Btu} / \mathrm{hr} \\
& W_{c}=\frac{W_{0} G_{a v}}{800}=\frac{1.66 \times 10^{6} \cdot(0.0701)}{800}=145 \mathrm{lb} / \mathrm{hr} \\
& c_{p}=1.184 \mathrm{Btu} / \mathrm{Lb}^{\mathrm{b}}{ }^{\circ} \mathbf{F} \\
& q_{c} \quad=W_{c} c_{p} \Delta T+W_{c} \Delta H \\
& c_{\mathrm{p}} \Delta \mathrm{~T}+\Delta \mathrm{H}=\frac{31940}{145}=220.5 \mathrm{Btu} / 1 \mathrm{~b} \\
& c_{p} \Delta T=1.184(567.2-431.6)=160.5 \mathrm{Btu} / \mathrm{lb} \\
& \Delta \mathrm{H}=220.5-160.5=60 \mathrm{Btu} / \mathrm{lb} \\
& \text { STEAM QUALITY }=\frac{60}{611.7}=9.8 \%
\end{aligned}
$$

$$
\begin{aligned}
& q / A=\left(\frac{q}{A}\right)_{0} \sin \frac{\pi x}{L} \\
& \left(\frac{q}{A}\right)_{0}=\frac{3.195 \times 10^{4}(1.57)}{5(22)} 144=6.56 \times 10^{4} \mathrm{Btu} / \mathrm{hr}-\mathrm{ft}^{2}
\end{aligned}
$$

Because of the very low quality of the steam generated in the channel there appears to be no danger of going into film boiling. The reactor Handbook, Volume II, states that burnout experiments demonstrated that "burnout does not occur until very high steam qualities have been obtained."
4. Temperature Analysis of Central Flow Channel at Time of

Maximum Fuel Plate Temperatures (12 Seconds)

$$
\begin{aligned}
& T_{4}-T_{0}=\frac{Q_{0} V}{\pi W c_{p}} \quad\left[1-\cos \frac{\pi x}{L}\right] \\
& T_{s}-T_{0}=\frac{Q_{0} V}{\pi W c_{p}}\left[1-\cos \frac{\pi x}{L}\right]+\frac{Q_{0} V}{h A_{h}} \sin \frac{\pi x}{L} \\
& T_{\text {sat }}-T_{0}=567.2-431.6=135.6 \\
& G_{a v} \quad=0.701, P_{a v}=0.4135 \\
& h=2570(0.0701)^{0.8}=2570(0.1195)=307 \mathrm{Btu} / \mathrm{hr}-{ }^{0} \mathrm{~F}-\mathrm{ft}^{2} \\
& \frac{Q_{0} V}{\pi W c_{p}}=\frac{1.907 \times 10^{8}(0.509)(0.4135)}{\pi\left(1.66 \times 10^{8}\right)(0.0701)(1.115)}=98.4 \\
& \frac{\mathrm{Q}_{\mathrm{o}} \mathrm{~V}}{\mathrm{hA}_{h}}=\frac{1.907 \times 10^{8}(0.509)(0.4135)}{307(611.1)}=214
\end{aligned}
$$

$\underline{\times}$	$180 \frac{\mathrm{x}}{\mathrm{I}}$	$\sin \frac{\pi x}{L}$	$\cos \frac{\pi x}{L}$	$214 \sin \frac{\pi x}{\mathrm{~L}}$	$\left(1-\cos \frac{\pi x}{L}\right)$	$\underline{98.4\left(1-\cos \frac{\pi x}{L}\right)}$	$\mathrm{T}_{\mathrm{s}}-\mathrm{T}_{0}$	$\mathrm{T}_{\text {s }}$
0.5	4.09	0.0713	0.99744	115.3	0.00256	0.25	15.6	447.2
1.0	8.18	0.142	0.9898	30.4	0.0102	1.0	31.4	463.0
1.5	12.27	0.2125	0.9772	45.5	0.0228	2.2	47.7	479.3
2.0	16.36	0.282	0.9595	60.4	0.0405	4.0	64.4	496.0
2.5	20.45	0.3495	0.9371	74.8	0.0629	6.2	81.0	512.6
3.0	24.54	0.4154	0.9097	88.9	0.0903	8,9	97.8	529.4
3.5	28.63	0.4792	0.8777	102.6	0.1223	12.0	114.6	346.2
$\stackrel{\rightharpoonup}{5}^{\circ} 4.0$	32.7	0.5402	0.8416	115.7	0.1584	15.6	131.3	562.9
'4.13	33.3	0.5562	0.8310	119.0	0.1690	16.6	135.5	567.2
							$465 .{ }^{\text {Tf }}$	
6.0	49.1		0.6545		0.3455	34.0	465.6	
8.0	65.5		0.4148		0.5852	57.6	489.2	
10.0	81.8		0.1423		0.8577	34.4	516.0	
12.0	98.2	-	-0.1423		1.1423	112.5	544.1	
13.7	112.1		-0.3765		1.3765	135.3	566.9	

From the curve for boiling heat transfer coefficients from vertical tubes on page 699 of Glasstone's Principles of Nuclear Reactor Engineering.

$$
\begin{aligned}
& h_{b}=c\left(\Delta T_{b}\right)^{n} \\
& h=50 \quad \Delta T_{b}=4.6 \\
& h=5000, \Delta T_{b}=42.0 \\
& \mathrm{~h}=10, \Delta \mathrm{~T}_{\mathrm{b}}=2.1 \\
& \frac{5000}{50}=\frac{c(42)^{n}}{c(4.6)^{n}}=100=(9.13)^{n} \\
& n=2.08 \\
& \mathrm{c}=50 /(4.6)^{2.08}=50 / 23.9=2.09 \\
& h_{b}=2.09\left(\Delta T_{b}\right)^{2.08} \\
& \text { check: } \\
& \Delta T=2.1 \\
& h=2.09(4.68)=9.78(0 K) \\
& q / A=\left(\frac{q}{A}\right)_{0} \sin \frac{\pi x}{L}=65600 \sin \frac{\pi x}{L}=h_{b} \Delta T_{b}=2.09\left(\Delta T_{b}\right)^{3.08} \\
& \Delta T_{b}=\left(\frac{65600}{2.09} \sin \frac{\pi x}{L}\right)^{1 / 3.08}=\left(31400 \sin \frac{\pi x}{L}\right)^{0.325}
\end{aligned}
$$

x	$180 \frac{\mathrm{x}}{\mathrm{L}}$	$\sin \frac{\pi x}{2}$	$31400 \sin \frac{\pi x}{L}$	$\left(31400 \sin \frac{\pi x}{L}\right)^{0.325}$	T_{8}
14	180-65.5	0.91	28600	27.6	594.8
16	180-49.1	0.756	23740	26.4	593.6
17	180-40.8	0.632	19850	24.8	592.0
18	180-32.7	0.5403	16970	23.6	590.8
19	180-24.5	0.4148	13030	21.7	588.9
20	180-16.3	0.281	8820	19.1	586.3
21	180-8.1	0.1408	4420	15.3	582.5
21.5	180-4.1	0.0715	22.50	12.3	579.5
21.8	180-1.7	0.0299	939	9.2	576.4
21.9	180-0.8	0.0138	343.5	6.6	573.6

A plot of the temperature profiles in the central or hottest channel at the time of maximum temperature 18 shown on Curve Sheet 13.
5. Maximum Center Plate Temperatures

For the calculation of the center plate temperatures, the following data and assumptions were used:
(1) All conductive heat flow is perpendicular to the plate surface.
(2) Thermal conductivity of the stainless steel (type 304) will be taken as $8 \mathrm{Btu} / \mathrm{hr} \mathrm{ft}^{\circ} \mathrm{F}$.
(3) The thermal conductivity of the fertile material will be taken as 90% of the value for stainless steel since it is composed of a mixture of finely divided UO_{2} particles suspended in a stainless steel matrix.
(4) There is no film drop at the clad-meat interface.
(5) It will be assumed that the maximum plate temperature occurs at the same position of the maximum surface temperature.

The maximum center plate temperature of a flat fuel plate is discussed and the various equations are derived for this temperature in Chapter 11 of Glasstone's Principles of Nuclear Reactor "Engineering. For our case, the following equation can be used:

$$
T_{0}-T_{s_{\max }}=Q a\left[\frac{a}{2 k_{f}}+\frac{b-a}{k_{s s}}+\frac{1}{h_{s}}\right]
$$

where
a \quad One-half the thickness of the fuel portion of the plate $=0.01^{\prime \prime}=0.000833^{\prime}$
'b $\quad=$ One-half the thickness of the plate $=$

$$
0.015^{\prime \prime}=0.00125^{\prime}
$$

$h_{s} \quad=$ Scale heat transfer coefficient $=1200 \mathrm{Btu} / \mathrm{hr}-{ }^{\circ} \mathrm{F}-\mathrm{ft}{ }^{2}$
$k_{f}=$ Thermal conductivity of fuel $=7.2 \mathrm{Btu} / \mathrm{hr}-{ }^{\circ} \mathrm{F}-\mathrm{ft}$
$k_{s S}=$ Thermal conductivity of clad $=8 \mathrm{Btu} / \mathrm{hr}-{ }^{0} \mathrm{~F}-\mathrm{ft}$
$\mathrm{Q}=\mathrm{Volume}$ heating $-\mathrm{Btu} / \mathrm{hr}-\mathrm{ft}^{3}$
$T_{0}=$ Center temperature
$T_{S_{\text {max }}}=$ Maximum surface temperature
a. No-Scale Case $\left(h_{s}=0\right)$

Maximum surface temperature $\cong 596^{\circ} \mathbf{F}=T_{S_{\text {max }}}$

$$
\begin{aligned}
& \left(\frac{\mathrm{g}}{\mathrm{~A}}\right)_{\max }=6.56 \times 10^{4} \mathrm{Btu} / \mathrm{hr}-\mathrm{ft}^{2} \\
& \mathrm{q} \\
& =\mathrm{QAE}, \quad \Omega=\frac{6.56 \times 10^{4}}{0.0008333}=7.87 \times 10^{7} \mathrm{Btu} / \mathrm{hr}-\mathrm{ft}^{3} \\
& \mathrm{~T}_{0}-\mathrm{T}_{\mathrm{S}_{\max }}=\mathrm{Qa}\left[2 \frac{\mathrm{a}}{\mathrm{k}}+\frac{\mathrm{b}-\mathrm{a}}{\mathrm{k}_{\mathrm{ss}}}\right] \\
& \mathrm{T}_{0}-\mathrm{T}_{\mathrm{S}_{\max }}=7.87 \times 10^{7}\left(\frac{10^{-2}}{12}\right)\left[\frac{10^{-2}}{14.4(12)}+\frac{10^{-2}}{24(8)}\right]
\end{aligned}
$$

$$
\begin{aligned}
= & 6.56 \times 10^{4}\left[6.13 \times 10^{-5}+5.21 \times 10^{-5}\right]=6.56 \times \\
& 10^{4}\left[11.34 \times 10^{-5}\right]=7.44^{0} \mathrm{~F} \\
\mathrm{~T}_{0} \quad= & 7.44+596=603^{\mathrm{O} \mathrm{~F}}
\end{aligned}
$$

b. With Scale

$$
\begin{aligned}
T_{0}-T_{S_{\max }} & =Q a\left[\frac{a}{2 k_{f}}+\frac{b-a}{k_{S S}}+\frac{1}{h_{s}}\right] \\
& =6.56 \times 10^{4} 11.34 \times 10^{-5}+83.33 \times 10^{-5} \\
& =62 \mathrm{~F}^{0} \\
T_{0} & =596+62=658^{\circ} \mathrm{F}
\end{aligned}
$$

APPENDIX I - THE EFFECT OF TEMPERATURE ON PRESSURE DROP IN THE CORE 1. Under the assumed operating conditions, water at $431.6^{\circ} \mathrm{F}$ enters the core and is heated to a bulk temperature of $450^{\circ} \mathrm{F}$ before leaving the core. Because the power distribution is not uniform, the water exit temperature will vary between different fuel elements. These temperature differences will introduce small differences in flow between elements but will not appreciably affect overall pressure drop values.
2. The average total pressure drop through the core is the sum of individual pressure drops tabulated below:
a. Orifice, $\quad \Delta P_{0}=K_{0} \frac{W_{1}}{\rho_{0}}$
b. Entrance, $\quad \Delta P_{E}=K_{E} \frac{W_{1}{ }^{2}}{\rho_{E}}$
c. Plate Friction, $\Delta P_{P}=\frac{W_{2}^{1.8_{\mu} 0.2}}{\rho_{P}}$
d. Exit, $\quad \Delta P_{x}=K_{x} \frac{W_{1}{ }^{2}}{P_{x}}$

In the above equations ΔP may be either psi or psf depending on K; W_{1} is the mass flow through one fuel element, W_{2} is the mass flow through one channel in a fuel element, ρ is the average
density of the coolant, and K is a lumped constant.
3. Initial pressure drops (tabulated below) are from APPR-1 data supplied by Alco. It was assumed the exit loss was $1 / 2$ the entrance loss.

	T $\mathbf{O}_{\mathbf{F}}$	$\mathrm{\rho}$ $\mathrm{lb} / \mathrm{ft}^{3}$	h ft	$\Delta \mathrm{P}$ $\mathrm{bb} / \mathrm{ft}^{2}$
a. Orifice	431.6	52.6	0.4	21.04
b. Entrance	431.6	52.6	$2 / 3 \times 0.7$	24.55
c. Plate	440.8	52.2	0.6	31.32
d. Exit	450.	51.75	$1 / 3 \times 0.7$	12.08

4. For the case of constant flow and constant inlet temperature an increased rate of heat production will increase the exit and average temperatures. Difference factors for increased heat production appear in plate and exit terms only. Assuming average and exit temperatures to rise $10^{\circ} \mathrm{F}$ and $20^{\circ} \mathrm{F}$, respectively.

	T	ΔP_{0}	$f(f)$	$f(\mu)$	ΔP_{1}
a. Orifice 431.6	21.04	1		21.04	
b. Entrance 431.6	24.55	1		24.55	
c. Plate 450.8	31.32	$\left(\frac{52.20}{51.72}\right)$	$\left(\frac{.290}{.297}\right)^{0.2}$	31.48	

	T	ΔP_{0}	$f(\rho)$	$f(\mu)$	ΔP_{1}
d. Exit	470.	12.08	$\left(\frac{51.75}{50.81}\right)$	$\left(\frac{.276}{.291}\right)^{0.2}$	12.18
Total				89.25	

The difference per degree change in average reactor temperature is then:

$$
\frac{89.25-88.99}{88.99 \times 10}=2.9 \times 10^{-4} /{ }^{\circ} \mathrm{F}
$$

5. For the case of constant heat production with a change in bulk coolant temperature, all factors will be affected:

T	ΔP_{0}	$f(p)$	$f(\mu)$	ΔP_{2}	
a. Orifice 441.6	21.04	$\left(\frac{52.6}{52.17}\right)$	$\left(\frac{.297}{.304}\right)^{0.2}$	21.12	
b. Entrance 441.6	24.55	$\left(\frac{52.6}{52.17}\right)$	$\left(\frac{.297}{.304}\right)^{0.2}$	24.65	
c. Plate	450.8	31.32	$\left(\frac{52.2}{51.72}\right)$	$\left(\frac{.290}{.297}\right)^{0.2}$	31.48
d. Exit	460.	12.08	$\left(\frac{51.75}{51.3}\right)$	$\left(\frac{.283}{.291}\right)^{0.2}$	12.13
Total				89.38	

The difference per degree change in average reactor temperature is then:

$$
\frac{89.38-88.99}{88.99 \times 10}=4.4 \times 10-4 / 0_{\mathrm{F}}
$$

6. From the above it can be concluded that the effect of temperature or pressure drop can be neglected.
appendix J - INSTANTANEOUS ZERO FLOW-STEADY POWER RELATIONSHIPS
Contents Page
JA. TIME AND TEMPERATURE DERIVATIONS 152
7. No Heat Out 152
8. Water Expelled and Not Returned 153
9. Derivation of T 161
10. Net Boiling 161
11. Net Boiling - Weight of Water Boiled 162
JB. CALCULATIONS - WATER EXPELLED AND NOT RETURNED 163
12. T_{f} for Water and Surface Below Sat. Temp. 163
13. T for Water and Surface Below Sat. Temp. 166
14. T_{f} for Water Below Sat. Temp. and Surface Above Sât. Temp. 167
15. T for Water Below Sat. Temp. and Surface Above Sat. Temp. 170
16. Net Boiling 171
17. Net Boiling Time 173
18. Total Time for Plates to Melt 174

JA. TEMPERATURE DERIVATIONS

1. No Heat Out
$\begin{aligned} & \text { a. Rate of Heat } \\ & \text { Produced }\end{aligned}=\begin{aligned} & \text { Rate of Heat to } \\ & \text { Water }\end{aligned}+\begin{aligned} & \text { Rate of Heat to } \\ & \text { Raise Plate Temp. }\end{aligned}$
b. For this case, rate to water $=0$
c. $P=0+w_{f} c_{f}\left(\frac{d T_{f}}{d t}\right)_{a v g}$
d. $\frac{P}{W_{f} c_{f}} \int 0 \quad d t=\int_{f} T_{f} d T_{f_{a v g}}$
e. However, since we are not interested in average but maximum, we need a factor of 2.8 .
f. $\frac{2.8 P}{W_{f} C_{f}}=\frac{\Delta T_{f}}{\Delta t}$
2. Water Expelled and Not Returned, T_{f}

b. For Max rate of change of T_{f}
$2.8 \mathrm{P}=\mathrm{Ah}\left(\mathrm{T}_{\mathrm{f}}-\mathrm{T}\right)+\mathrm{w}_{\mathrm{f}} \mathrm{c}_{\mathrm{f}} \frac{\mathrm{dT}}{\mathrm{dt}}$
where
$\mathrm{T}_{\mathrm{f}}=$ Max T fuel $* *$ at point of maximum power production
T = Bulk Water Temperature
$h=H e a t$ transfer coefficient (no flow)
$A=$ Total heat transfer area
$\mathbf{w}_{\mathbf{f}}=$ Total weight of fueled parts of fuel plates
$\mathbf{c}_{\mathbf{f}}=$ Specific heat of fuel
$t=$ Time
c. Also

Rate of Heat to $=$ Rate of Heat to raise Water $\quad=$ temp. of water or boil water
d.
 $T<T_{\text {sat }}$.
b. $A h_{b}\left(T_{f}-T\right)=c_{b} \frac{d w}{d t}$, where $T=T_{\text {sat }}$
**Temperature rise in fuel element is small compared to film drop. Decrease in h from operating conditions will flatten distribution in element still more. Therefore average T_{f} was taken equal to $\max \mathrm{T}_{\mathrm{f}}$.
$h_{b}=\begin{aligned} & \text { Boiling heat transfer coefficient, no } \\ & \text { forced circulation }\end{aligned}$
$h=$ Heat transfer coefficient no forced circulation, differing if
$T_{f}>T_{\text {sat }}$ and
$T<T_{\text {sat }}$
$c_{b}=$ Heat of vaporization
$\mathrm{dw} / \mathrm{dt}=$ Steam rate
e. Rearranging da slightly it becomes

$$
\begin{aligned}
\left(T_{f}-T\right) & =\frac{{ }^{W C}}{\mathbf{A h}} \frac{d T}{d t} \\
& =\tau_{2} \frac{d T}{d t}, \text { where } \frac{w C_{p}}{A h}=\tau_{2} \\
T_{f} & =T+\tau_{2} \frac{d T}{d t}
\end{aligned}
$$

f. $d b$ becomes, $\left(T_{f}-T_{\text {sat }}\right)=\frac{c_{b}}{A h_{b}} \frac{d w}{d t}$
g. b becomes; $\left(T_{f}-T\right)=\frac{2.8 \mathrm{P}}{\mathrm{Ah}}-\frac{\mathrm{W}_{\mathrm{f}} \mathrm{c}_{f}}{\mathrm{Ah}} \frac{d \mathrm{~T}_{\mathrm{f}}}{\mathrm{dt}}$

$$
\begin{aligned}
& =D-\tau_{1} \frac{d T_{f}}{d t} \\
T & =T_{f}+\tau_{1} \frac{d T_{f}}{d t}-D
\end{aligned}
$$

Note: The scale resistance $(1 / 200)$ has been neglected in comparison with the static film resistance (1/50); also the distinction between T_{f} near the wall and actual bulk temperature (at zero flow) has been eliminated. The latter distinction will have vanishing significance as boiling proceeds.
h. Laplace-Trans form Notation
$F(t)$
G(s)
$\mathrm{T}_{\mathbf{f}} \quad$ Max Fuel Temp $\quad \mathrm{G}_{\mathbf{f}}$
T. Temp water, bulk, at max G
plate temp location
D
Constant
(D / S)
$\frac{d T}{d t}$
Derivative of water temp.
$s G-T_{0}$
$\frac{\mathrm{dT}_{f}}{\mathrm{dt}}$
Derivative of Fuel Temp.
$s G_{f}-T_{o}$
${ }^{\top}{ }_{1}$
Coefficient
τ_{2}
Coefficient
i.
da \&e when transformed (Laplace) go from

$$
T_{f} \quad=T+\tau_{2} \frac{d T}{d t}
$$

to

$$
\begin{aligned}
G_{f} & =G+\tau_{2}\left(s G-T_{0}\right) \\
G_{f}+\tau_{2} T_{0} & =G\left(1+\tau_{2} s\right) \\
G & =\frac{G_{f}+\tau_{2} T_{0}}{\left(1+\tau_{2} s\right)}
\end{aligned}
$$

j.
b \& 8 go from

$$
T+T_{f}=\tau_{1} \frac{d T_{f}}{d t}-D
$$

to

$$
G \quad=G_{f}+\tau_{1}\left(s G_{f}-T_{f_{0}}\right)-(D / s)
$$

k. Substituting i into j

$$
\begin{aligned}
& \frac{\left(G_{f}+\tau_{2} T_{0}\right)}{\left(I+\tau_{2} S\right)}=G_{f}+\tau_{1} s G_{f}-\tau_{1} T_{f_{0}}-D / s \\
& G_{f}+\tau_{2} T_{o}=G_{f}+\tau_{2} s G_{f}+\tau_{1} \tau_{2} s G_{f}-\tau_{1} T_{f}-\tau_{1} \tau_{2} s T_{f} \\
& -D / s-D \tau_{2} \\
& s G_{f}\left(\tau_{2}+\tau_{1}+\tau_{1} \tau_{2} s\right)=\left(\tau_{2} T_{0}+\tau_{1} T_{f}+D \tau_{2}\right) \\
& +\mathrm{D} / \mathrm{s}+\tau_{1} \boldsymbol{\tau}_{\mathbf{2}} \mathbf{s T}_{\mathbf{f}_{\mathrm{o}}} \\
& \mathbf{s G}_{\mathbf{f}}(\alpha+\beta \mathbf{s})=\gamma+D / \mathbf{s}+\beta \mathbf{s} \mathbf{T}_{\mathbf{f}_{\mathbf{o}}} \\
& =\left(s \gamma+D+B s^{2} T_{f_{0}}\right) 1 / s
\end{aligned}
$$

where

$$
\begin{aligned}
\gamma & =\left(\tau_{2} T_{0}+\tau_{1} T_{f_{0}}+D \tau_{2}\right) \\
a & =\left(\tau_{1}+\tau_{2}\right) \\
\beta & =\tau_{1} \tau_{2} \\
\alpha / \beta & =\frac{1}{\tau_{2}}+\frac{1}{\tau_{1}}=\sigma \\
\frac{\gamma}{\beta} & =\frac{T_{0}}{\tau_{1}}+\frac{T_{f_{0}}}{\tau_{2}}+\frac{D}{\tau_{1}}=a_{1}
\end{aligned}
$$

1.

$$
G_{f}=\frac{D+\gamma s+\beta T_{f} s^{2}}{s^{2}(\alpha+\beta s)}
$$

Divide by β
m. $\quad G_{f}=\frac{a_{o}+a_{1} s+a_{2} s^{2}}{s^{2}\left(\sigma_{+} s\right)}$
where

$$
\begin{aligned}
\mathbf{a}_{0} & =D / B=\frac{2.8 P}{A h \tau_{1} \tau_{2}}=\frac{2.8 P \cdot A h}{W_{f}{ }^{C}{ }_{f}^{W C} P} \\
a_{1} & =\frac{\gamma}{B}=\frac{T_{0}}{\tau_{1}}+\frac{{ }_{f}}{T_{0}}+\frac{2.8 P}{A h \tau_{1}} \\
& =\frac{T_{0} \tau_{2} A h+{ }_{0}{ }^{A} \tau_{1} A h+2.8 P \tau_{2}}{\tau_{1} \tau_{2} A h}
\end{aligned}
$$

$$
\mathbf{a}_{2} \quad=\mathrm{T}_{\mathrm{f}_{0}}
$$

$$
\sigma=\alpha / \beta=\frac{1}{\tau_{2}}+\frac{1}{\tau_{1}}=\frac{\tau_{1}+\tau_{2}}{\tau_{1} \tau_{2}}
$$

$$
=\frac{A h}{W c_{p}}+\frac{A h}{W_{f} c_{f}} \quad=\frac{A h\left(W c_{p}+W_{f} c_{f}\right)}{W_{f} c_{f}{ }^{W c_{p}}}
$$

$$
\text { n. } \quad T_{f}=k_{1} e^{-\sigma t}+k_{2} t+k_{3}
$$

$$
\text { By inspection } K_{2}=\frac{2.8 p}{\left(w_{f} c_{f}+W c_{p}\right)} *
$$

$$
\begin{aligned}
& =\frac{2.8 P}{\mathrm{Ah}}\left(\frac{1}{\tau_{1}+\tau_{2}}\right) \\
& =D\left(\frac{1}{\tau_{1}+\tau_{2}}\right)
\end{aligned}
$$

Also K_{3}

$$
=\mathrm{T}_{\mathrm{E}_{0}}-\dot{K}_{1}
$$

From "Equilibrium "rate of temperature increase, also checks by more pedestrian methods.

- . From Tables $* *$

$$
K_{1}=a_{2}-\frac{a_{1}}{\sigma}+\frac{a_{o_{2}}}{\sigma}
$$

1. $a_{2}=T_{f}$
ii. $\frac{a_{1}}{\sigma}=\frac{\gamma \beta}{\beta \alpha}=\frac{\gamma}{\alpha}$
iii. $\frac{\gamma}{\alpha}=\frac{\left(\tau_{2} T_{0}+\tau_{1} T_{f}+D \tau_{2}\right)}{\left(\tau_{1}+\tau_{2}\right)}$

$$
=T_{f_{0}}-\frac{\tau_{2}\left(T_{f_{0}}-T_{0}\right)}{\left(\tau_{1}+\tau_{2}\right)}+\frac{D \tau_{2} \tau_{1}}{\left(\tau_{1}+\tau_{2}\right)} 2+\frac{D \tau_{2}^{2}}{\left(\tau_{1}+\tau_{2}\right)} 2
$$

$$
\text { iv. } \frac{a_{0}}{\sigma^{2}}=\frac{D}{\beta} \frac{\beta^{2}}{a^{2}}=\frac{D \tau_{1} \tau_{2}}{\left(\tau_{1}{ }^{\tau} \tau_{2}\right)} 2
$$

** "Tables of Integral Transforms", Vol. I Bateman Manuscript Project, McGraw Hill 1954, p. 230, No. 8.

p. Combining Constants

$$
\begin{aligned}
T_{f}= & T_{f_{0}}+\frac{2.8 P}{A h}\left(\frac{t}{\tau_{1}+\tau_{2}}\right)+\left[\frac{2.8 P}{A h}\left(\frac{\tau_{2}}{\tau_{1}+\tau}\right)_{2}^{2}-\left(T_{f_{0}}-T_{0}\right) x\right. \\
& \left.\left.\left(\frac{\tau_{2}}{\tau_{1}+\tau_{2}}\right)\right]\left[1-e^{-\left(1 / \tau_{1}\right.}+1 / \tau_{2}\right) t\right]
\end{aligned}
$$

q. $\frac{2.8 \mathrm{P}}{\mathrm{Ah}}=$ Temp difference to transfer all heat to water
r. $K_{2}=$ "Equilibrium rate of temp rise" for fuel and water at that (mythical) time when temperatures are rising at the same rate, or looking at it another way, it is the rate of temp rise for "average" temp.

$$
K_{1}=\frac{\tau_{2}}{\tau_{1}+\tau_{2}}\left[\left(\frac{2.8 P}{A h}\right)\left(\frac{\tau_{2}}{\tau_{1}+\tau_{2}}\right)-\left(T_{f_{0}}-T_{0}\right)\right]
$$

s. $\frac{\tau_{2}}{\tau_{1}+\tau_{2}}=\begin{aligned} & \text { Rate of } \\ & \begin{array}{l}\text { Heat Flowing } \\ \begin{array}{l}\text { Rate water of } \\ \text { Total Heat }\end{array}\end{array} \quad \text { At "Equili } \\ & 2.8 \mathrm{P} \frac{\tau_{2}}{\tau_{1}+\tau_{2}}\end{aligned} \quad \begin{aligned} & \text { Rate of heat after flowing into } \\ & \text { water at "Equilibrium" }\end{aligned}$

$$
\begin{aligned}
& \frac{2.8 p}{A h} \frac{\tau_{2}}{\tau_{1}+\tau_{2}}=\begin{array}{l}
\text { Temp diff between water and fuel to } \\
\text { bring about "Equilibrium" heat flow }
\end{array} \\
& \left(T_{f}-T_{0}\right)=\text { Initial temp diff. }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{2.8 \mathrm{P}}{\mathrm{Ah}} \frac{\tau_{2}}{\tau_{1}+\tau_{2}}-\left(\mathrm{T}_{\mathrm{f}}-\mathrm{T}_{\mathrm{o}}\right)=\text { Change in temp difference } \mathrm{re}- \\
& \text { quired to bring about "equilibrium" } \\
& \text { etc. } \\
& \text { t. } \frac{\tau_{2}}{\tau_{1}+\tau_{2}} \text { also }=\left[\begin{array}{c}
\text { Ratio } \\
\text { at } \\
\text { "Equilibrium"' }
\end{array}\right]\left[\begin{array}{l}
\text { Temp difference between } \\
\text { fuel element and average } \\
\text { temp difference between } \\
\text { fuel elements and water }
\end{array}\right] \\
& \text { so } \frac{\tau_{2}}{\tau_{1}+\tau_{2}}\left[\frac{2.8 P}{A h} \frac{t_{2}}{\tau_{1}+\tau_{2}}-\left(T_{f_{0}}-T_{0}\right)\right] \\
& =\text { "Equilibrium!" difference between*. } \\
& \text { average temp and fuel element } \\
& \text { temp }
\end{aligned}
$$

$=$ 3. Derivation of T
a. $T=T_{f}+\tau_{1} \frac{d T_{f}}{d t}-D$
b. $\tau_{1} \frac{d T_{f}}{d f}=\tau_{1}\left[0+K_{2}-K_{1} \sigma e^{-\sigma t}\right]=\tau_{1} K_{2}-\tau_{1} K_{1} \sigma e^{-\sigma t}$

$$
\begin{aligned}
& \text { c. } T_{f}-T=D-\tau_{1} K_{2}+\tau_{1} K_{1} \sigma e^{-\sigma t} \\
& =\frac{2.8 \mathrm{P}}{\mathrm{Ah}}-\tau_{1} \frac{2.8 \mathrm{P}}{\mathrm{Ah}} \frac{1}{\left(\tau_{1}+\tau_{2}\right)}+\tau_{1} K_{1} \sigma e^{-\sigma t} \\
& =\tau_{2} K_{2}+\tau_{1} \sigma K_{1} e^{-\sigma t} \\
& =\frac{2.8 \mathrm{P}}{\mathrm{Ah}}\left(\frac{\tau_{2}}{\tau_{1}+\tau_{2}}\right)-\frac{2.8 \mathrm{P}}{\mathrm{Ah}}\left(\frac{{ }^{\tau} 2}{\tau_{1}{ }^{+\tau}}\right) \sigma \tau_{1} \\
& x\left[\left(\frac{\tau_{2}}{\tau_{1}+\tau}\right)-\frac{T_{f_{0}-T_{o}}}{\frac{2.8 P}{A h}}\right] e^{-c t} \\
& \sigma_{1}=\tau_{1}\left(\frac{\tau_{1}+\tau_{2}}{\tau_{1} \tau_{2}}\right)=\frac{\tau_{1}+\tau_{2}}{\tau_{2}} \\
& T_{f}-T \quad \frac{2.8 P}{A h},\left(\frac{\tau_{2}}{\tau_{1}+\tau_{2}}\right)\left\{1-\left[1-\frac{T_{f_{0}}{ }^{-T_{0}}}{\frac{2.8 P}{A h}\left(\frac{\tau_{2}}{\tau_{1}+\tau_{2}}\right)}\right] e^{-\sigma t}\right\} \\
& =\tau_{2} K_{2}-\left[\tau_{2} K_{2}-\left(T_{f_{0}}-T_{o}\right)\right] e^{-o t}
\end{aligned}
$$

4. Net Boiling
a. For net boiling T can be taken as constant at T sat
b. Rate of

Heat = Produced

Rate Heat	
to	Rate Heat
Water	to
Plate	

$d T_{f}$
$2.8 \mathrm{P}=\mathrm{Ah}\left(\mathrm{T}_{f}-\mathrm{T}\right)+\mathrm{w}_{f} \mathrm{c}_{\mathrm{f}} \overline{d t}$
dT_{f}
$\frac{2.8 \mathrm{P}}{\mathrm{Ah}}+\mathrm{T}=\mathrm{T}_{\mathrm{f}}+\tau_{1} \overline{d t}$.
$\frac{2.8 \mathrm{P}}{\mathrm{Ah}}+\mathrm{T}=\mathrm{T}_{\mathrm{f}}+\tau_{1} \frac{\mathrm{dT}_{f}}{\mathrm{dt}}$
$T_{f}=\left(\frac{2.8 P}{A h}+T\right)-\left[\left(\frac{2.3 P}{A h}+T\right)-T_{f_{0}}\right] e^{-t / \tau_{1}}$
5. Net Boiling Weight of Water Boiled
a. $T_{f}-T=\frac{C_{b}}{A h} \frac{d w}{d t}$
b. $\mathrm{T}_{\mathrm{f}}=\left(\frac{2.8 \mathrm{P}}{\mathrm{Ah}}+\mathrm{T}\right)-\left[\left(\frac{2.8 \mathrm{P}}{\mathrm{Ah}}+\mathrm{T}\right)-\mathrm{T}_{\mathrm{f}_{\mathrm{o}}}\right] \mathrm{e}^{-\mathrm{t} / \tau_{1}}$

$$
=A-\left[A-T_{f_{0}}\right] e^{-t / \tau} 1, A=\left(\frac{2.8 P}{A h}+T\right)
$$

c. $\quad A-A-T_{f_{0}} e^{-t / \tau_{1}}-T=-B \frac{d w}{d t}$
$\int_{0}^{t}(A-T) d t-\int_{0}^{t}\left[A-T_{f_{0}}\right] \quad e^{-t / \tau_{1}} d t-\int_{W_{0}}^{W} d w$

$$
\begin{aligned}
& (A-T) t+\left(A-T_{f_{0}}\right)\left(\tau_{1}\right)\left(e^{-t / \tau} 1-1\right)=\left(w_{0}-w\right) B \\
& (A-T) t-\tau_{1} T_{f}+\tau_{1} T_{f_{0}}=\left(w_{0}-w\right) B \\
& \left(\frac{2.8 P}{A h}+T-T\right) t-\tau_{1}\left(T_{f}-T_{E_{0}}\right)=\frac{c_{b}}{A h}\left(w_{0}-w\right) \\
& t=\tau_{1}\left[\frac{T_{f}-T_{f_{0}}}{\frac{2.8 \mathrm{P}}{A h}}\right]+\left[\begin{array}{l}
c^{0}\left(w_{0}-w\right) \\
2.8 \mathrm{P}
\end{array}\right] \\
& \text { or } w=w_{0}-\frac{2: 8 P}{c_{b}} t+\frac{\tau_{1}}{\frac{c_{b}}{A h}}\left(T_{f}-T_{f_{0}}\right) \\
& \text { d. } w=w_{o}-\frac{2.8 P}{c_{b}}\left[t-\frac{\tau_{1}}{A h} \quad\left(T_{f}-T_{f}\right)\right]
\end{aligned}
$$

JB. WATER EXPELLED AND NOT RETURNED, CALCULATIONS

1. Te for Water and Surface Below Sat. Temp.
a. $\left(T_{f}-T_{f_{0}}\right)=K_{2} t+K_{1}\left(e^{-\sigma t}-1\right)$
b. $K_{2}, K_{1}, \& \sigma$ are functions of

$$
\tau_{1}, \tau_{2}, \frac{2.8 \mathrm{P}}{A h}, T_{f_{0}}, \& T_{0}
$$

c. h is assumed to be $50 \mathrm{Btu} / \mathrm{hr}-\mathrm{Ft}^{2}-{ }^{\circ} \mathrm{F} *$

$$
\begin{aligned}
& \text { e. } \quad \sigma=\frac{1}{\tau_{1}}+\frac{1}{\tau_{2}} \\
& =\frac{2}{4.94}+\frac{2}{26.1}=.482 \mathrm{sec}^{-1} \\
& \text { f. }\left(T_{f_{o}}-T_{f}\right)=102.3 t+915\left(1-e^{0.482 t}\right) \\
& \text { Where } \mathrm{T}_{\hat{f}_{\mathrm{o}}}=\operatorname{old} \mathrm{T}_{\mathrm{f}_{\mathrm{o}}}-58 \\
& \text { and } t \quad=0.1 d t-0.097
\end{aligned}
$$

$$
\begin{aligned}
& (A-T) t+\left(A-T_{f_{0}}\right)\left(\tau_{1}\right)\left(e^{-t / \tau_{1}}-1\right)=\left(W_{0}-w\right) B \\
& (A-T) t-\tau_{1} T_{f}+\tau_{1} T_{f_{o}}=\left(w_{o}-w\right) B \\
& \left(\frac{2.8 \mathrm{P}}{\mathrm{Ah}}+\mathrm{T}-\mathrm{T}\right) \mathrm{t}-\tau_{1}\left(\mathrm{~T}_{\mathrm{f}}-\mathrm{T}_{\mathrm{f}}\right)=\frac{\mathrm{c}_{\mathrm{b}}}{\mathrm{Ah}}\left(\mathrm{w}_{\mathrm{o}}-\mathrm{w}\right) \\
& t=\tau_{1}\left[\frac{T_{f}-T_{f_{o}}}{\frac{2.8 \mathrm{P}}{A h}}\right]+\left[\begin{array}{l}
c_{b}\left(w_{o}-w\right) \\
2.8 \mathrm{P}
\end{array}\right] \\
& \text { or } w=w_{0}-\frac{2.8 \mathrm{P}}{c_{b}} t+\frac{\tau_{1}}{\frac{c_{b}}{A h}}\left(T_{f}-T_{f}\right) \\
& \text { d. } w=w_{0}-\frac{2.8 \mathrm{P}}{c_{b}}\left[\begin{array}{l}
\tau_{1} \\
t-\frac{2.8 \mathrm{P}}{A h} \\
\left(T_{f}-T_{f}\right)
\end{array}\right]
\end{aligned}
$$

db. Water expelled and not returned, calculations

1. $\mathrm{T}_{\mathrm{f} \text { for }}$ Water and Surface Below Sat. Temp.
a. $\left(T_{f}-T_{f}\right)=K_{2} t+K_{1}\left(e^{-\sigma t}-1\right)$
b. $\mathrm{K}_{2}, \mathrm{~K}_{1}, \& \sigma$ are functions of

$$
\tau_{1}, \tau_{2}, \frac{2.8 \mathrm{P}}{\mathrm{Ah}}, \mathrm{~T}_{\mathrm{f}}, \& \mathrm{~T}_{\mathrm{o}}
$$

c. his assumed to be $50 \mathrm{Btu} / \mathrm{hr}-\mathrm{Ft}^{2}-{ }^{\circ} \mathrm{F} *$

[^1]\[

d. $$
\begin{aligned}
\tau_{1}=\frac{W_{f} c_{f}}{A h}=\frac{42}{(611.1)(50)} & =1.37 \times 10^{-3} \mathrm{hr} \\
& =4.94 \mathrm{sec}
\end{aligned}
$$
\]

$$
\begin{aligned}
& \tau_{2}=\frac{W c_{p}}{A h}=\frac{A_{c}{ }^{L} \rho c_{p}}{(611.1)(50)} \\
& =\frac{(2.083)(22 / 12)(52)(1.115)}{(3.06)\left(10^{4}\right)}=7.24 \times 10^{-3} \mathrm{hr} \\
& =26.1 \mathrm{sec} \\
& \tau_{1}+\tau_{2}=4.9+26.1 \\
& =31.0 \mathrm{sec} \\
& \text { e. } K_{2}=\frac{2.8 P}{A h}\left(\frac{1}{\tau_{1}+\tau_{2}}\right) \\
& =\frac{3.17 \times 10^{3}}{31.0} \\
& =1.023 \times 10^{2}{ }^{\circ} \mathrm{F} / \mathrm{sec} \\
& K_{1}=-\left[\begin{array}{ll}
\frac{2.8 P}{A h} & \left(\frac{\tau_{2}}{\tau_{1}+\tau_{2}}\right)
\end{array}{ }^{2}\left(T_{f_{0}}-T_{0}\right)\left(\frac{\tau_{2}}{\tau_{1}+\tau_{2}}\right)\right] \\
& =-\left[(3.17)\left(10^{3}\right)(.71)-(194)(.842)\right] \\
& =-[2250-163]=-2087 \\
& \sigma=\frac{1}{\tau_{1}}+\frac{1}{\tau_{2}}=.241 \mathrm{sec}^{-1}
\end{aligned}
$$

f. $\left(T_{f}-T_{f}\right)=102.3 t+2087\left(1-e^{-.241 t}\right)$
g.

(1) t Assum.	(2) $\begin{aligned} & .241 t \\ & .241(1) \end{aligned}$	$\begin{aligned} & \quad(3) \\ & e^{-.241 t} \\ & e^{-(2)} \end{aligned}$	$\begin{gathered} (4) \\ 1-(3) \end{gathered}$	$\begin{gathered} (5) \\ 2087(4) \end{gathered}$	$\begin{gathered} (6) \\ 102.3 t \\ 102.3(1) \end{gathered}$	(7) $\begin{aligned} & \mathbf{T}_{\mathbf{f}}-\mathbf{T}_{\mathbf{f}} \\ & (5)+(6) \end{aligned}$	(8) $T_{(7)}^{\mathrm{F}_{6}}$
0.001	- 0.00024	0.99975	0.00025	0.522	0.1023	0.62	642.62
0.01	0.00241	0.99759	0.00241	5.02	1.023	6.04	648.04
0.02	0.00482	0.99519	0.00481	10.04	2.046	12.09	654.45
0.05	0.01205	0.98802	0.01198	25.0	5.115	30.12	672.12
0.10	0.02410	0.97618	0.02382	49.7	10.23	59.93	701.93
0.20	0.04820	0.95294	0.04706	98.2	20.46	118.66	760.66

h. The above table is assumed to be valid as long as the surface temperature is below the saturation temperature, 567.2° F. Assuming the film drop in the scale remains constant, this is

$$
\begin{aligned}
\mathrm{T}_{\mathrm{f}} & =567.2+\frac{5.58 \times 10^{4}(2.8)}{1200}=567.2+132.3 \\
& =699.5^{\circ} \mathrm{F} \text { Say } 700^{\circ} \mathrm{F}
\end{aligned}
$$

$$
T_{f}-T_{f_{0}}=700-642=58^{\circ}
$$

At $\left(T_{f}+T_{f_{0}}\right)=58^{\circ} \mathrm{F}, \mathrm{t}=0.097 \mathrm{sec}$ (from Curve Sheet 14)
i. For T_{f} above $699.5^{\circ} \mathrm{F}$, assume $\mathrm{h}=100 * \mathrm{Btu} / \mathrm{hr}-{ }^{\circ} \mathrm{F}-\mathrm{ft}^{2}$
2. T for Water and Surface Below Sat. Temp.
a. $\left(T_{f}-T\right)=\tau_{2} K_{2}-\left[\tau_{2} K_{2}-\left(T_{f_{0}}-T_{0}\right)\right] e^{-\sigma t}$
b. $\tau_{2} \mathrm{~K}_{2}=(26.1)\left(1.023 \times 10^{2}\right)=2680^{\circ} \mathrm{F}$
c. $\left(T_{f_{0}}-T_{o}\right)=194^{\circ} \mathrm{F}$
d. $\tau_{2} \mathrm{~K}_{2}-\left(\mathrm{T}_{\mathrm{f}_{0}}-\mathrm{T}_{\mathrm{o}}\right)=2680-194=2486^{\circ} \mathrm{F}$

*Perry, John H., Chem. Engr. Hdbk, McGraw-Hill, 1950, p 481
3. T_{f} for Water Below Saturation $T \operatorname{mp} \& T_{\text {surface }}$ Above Sat. Temp.
($\mathrm{h}=100 \mathrm{Btu} / \mathrm{hr}-{ }^{\circ} \mathrm{F}-\mathrm{ft}^{2}$)

$$
\begin{aligned}
& \text { a. }\left(T_{f}-T_{f_{0}}\right)=K_{2} t-K_{1}\left(1-e^{-\sigma t}\right) \\
& \text { b. } K_{2}=\frac{2.8}{A h} \frac{1}{\left(\tau_{1}+\tau_{2}\right)} \frac{2.8 P}{A h / A h\left(W_{f} c_{f}+W C_{P}\right.}
\end{aligned}
$$

so changes in h do not affect K_{2} and

$$
\mathrm{K}_{2}=102.3^{\mathrm{o}} \mathrm{~F} / \mathrm{sec}
$$

c. Similarly, change does not affect $\left(\frac{\tau_{2}}{\tau_{1}+\tau_{2}}\right)$

$$
\text { New } \mathrm{T}_{\mathrm{F}_{\mathrm{o}}}=700^{\circ} \mathrm{F}
$$

$$
\text { New } T_{o}=449^{\circ} \mathrm{F}
$$

$$
\left(T_{f_{0}}-T_{o} \text { hew }=251^{\cup} \mathrm{F}\right.
$$

$$
\text { d. } K_{1}=-\left[\frac{2.8 \mathrm{P}}{\mathrm{Ah}}\left(\frac{\tau_{2}}{\tau_{1}+\tau_{2}}\right)^{2}-\left(\mathrm{T}_{\mathrm{f}_{0}}-\mathrm{T}_{0}\right)\left(\frac{\tau_{2}}{\tau_{1}+\tau_{2}}\right)\right]
$$

$$
=-\left[\frac{\left(3.17\left(10^{3}\right)\right.}{2}(.71)-(251)(.842)\right]
$$

$$
=-[1126-21]
$$

$$
=-915^{\circ} \mathrm{F}
$$

$$
\begin{aligned}
& \text { e. } \quad \sigma=\frac{1}{\tau_{1}}+\frac{1}{\tau_{2}} \\
& =\frac{2}{4.94}+\frac{2}{26.1}=.482 \mathrm{sec}^{-1} \\
& \text { f. }\left(T_{f_{o}}-T_{f}\right)=102.3 t+915\left(1-e^{0.482 t}\right) \\
& \text { Where } \mathrm{T}_{\mathbf{f}_{\mathrm{o}}}=\text { old } \mathrm{T}_{\mathbf{f}_{\mathrm{o}}}-58 \\
& \text { and } t=0.1 d t-0.097
\end{aligned}
$$

4. T For Water Below Saturation \& T Surface Above Saturation

$$
\begin{aligned}
& \text { a. } \quad\left(T_{f}-T\right)=\tau_{2} K_{2}-\left[\tau_{2} K_{2}-\left(T_{f}-T_{0}\right)\right] e^{-\sigma t} \\
& \text { b. } \tau_{2} K_{2}=\frac{26.1}{2}\left(1.023 \times 10^{2}\right)=1335^{\circ} \mathrm{F} \\
& \text { c. } \quad\left(T_{f}-T_{0}\right)_{\text {new }}=251^{\circ} \mathrm{F} \\
& \text { d. } \tau_{2} K_{2}-\left(T_{f_{0}}-T_{o}\right)=1335-251=1084^{\circ} \mathrm{F} \\
& \quad \log 1084=3.025
\end{aligned}
$$

$$
\text { e. } \quad \sigma=.482
$$

f.
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
$\begin{array}{lccc}t \text { New } & \frac{\sigma t}{2.3} & 3.035-(2) \text { Antilog (3) } & \left(T_{f}-T\right) \\ & .21(1) & & 1335-(4)\end{array}$
T $\begin{array}{lcccccc}t \text { New } & \frac{\sigma t}{2.3} & 3.035-(2) & \left(T_{f}-T\right) & \text { old } & \text { old og (3) } & T_{f} \\ & .21(1) & & 1335-(4) & T_{f} & (6)-(5) & (1)+0.0097\end{array}$
old t

.1	.021	3.014	1033	302	753	451	.197
.2	.042	2.993	984	351	804	453	.297
.5	.105	2.930	851	484	946	462	.597
.7	.147	2.888	773	552		150	483

5. Net Boiling

$$
\begin{aligned}
& \text { a. } T_{f}=\left(\frac{2.8 \mathrm{P}}{\mathrm{Ah}}\right)+\mathrm{T}-\left[\left(\frac{2.8 \mathrm{P}}{\mathrm{Ah}}+\mathrm{T}\right)-\mathrm{T}_{f_{0}}\right] \mathrm{e}^{-t / \tau_{1}} \\
& \text { b. } \frac{2.8 \mathrm{P}}{\mathrm{Ah}}=\frac{3170}{2}=1585^{\circ} \mathrm{F} \\
& \mathrm{~T} \quad=567.2^{\circ} \mathrm{F} \\
& \frac{2.8 \mathrm{P}}{\mathrm{Ah}}+\mathrm{T}=2152, \text { say } 2150
\end{aligned}
$$

$$
\begin{aligned}
\Delta \mathrm{T}_{\mathrm{f}_{0}} & =1550^{\circ} \mathrm{F}, \quad \mathrm{t}=2.4 \mathrm{sec} \\
\mathrm{~T}_{1} & =\frac{4.94}{2}=2.47 \mathrm{sec} \\
\text { c. } \mathrm{T}_{\mathrm{f}} & =2150-600 \mathrm{e}^{-.405 \mathrm{t}}
\end{aligned}
$$

d.

a. Assume boiling can remove heat until $3 / 4$ of liquid

$$
\begin{aligned}
& \text { is gone or } w=1 / 4 \mathrm{w}_{\mathrm{o}} \\
& \text { b. } w=w_{o}+\frac{2.8 \mathrm{P}}{c_{b}}\left[\frac{T_{1}}{\frac{2.8 \mathrm{P}}{A h}}\left(\mathrm{~T}_{\mathrm{f}}-\mathrm{T}_{f_{o}}\right)-\mathrm{t}\right] \\
& \text { c. } \mathrm{w}_{\mathrm{o}}=199 \mathrm{lb} \text {, say } 200
\end{aligned}
$$

$$
2.8 \mathrm{P}=\frac{2.8(34.1)\left(10^{6}\right)}{3.6 \times 10^{3}}=2.7 \times 10^{4} \mathrm{Btu} / \mathrm{sec}
$$

$$
c_{b}=612 \mathrm{Btu} / \mathrm{lb} @ 1200 \mathrm{psia}
$$

$$
\tau_{1}=2.47 \mathrm{sec}
$$

$$
\frac{2.8 \mathrm{P}}{\mathrm{Ah}}=1589^{\circ} \mathrm{F}
$$

$$
\mathrm{T}_{\mathrm{f}_{\mathrm{O}}}=1550^{\circ} \mathrm{F} \text { For this part of the problem }
$$

$$
\frac{{ }^{\tau} \frac{1}{\left(\frac{2.8 \mathrm{P}}{\mathrm{Ah}}\right)}}{}=\frac{2.47}{1589}=1.555 \times 10^{-3} .
$$

$$
\mathrm{w}=199+44.1\left[1.555 \times 10^{-3}\left(\mathrm{~T}_{\mathrm{f}}-\mathrm{T}_{\mathrm{f}_{0}}\right)-\mathrm{t}\right]
$$

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
$\begin{array}{cc}t & t \\ \text { new } & \text { old }\end{array}$ $\begin{aligned} . T_{f}-T_{f}(0) \quad & 1.555 \times 10^{-3} \\ & \left(T_{f}-T_{f}^{(0)}\right)\end{aligned}$
$\alpha-t$ new $\quad 44.1 \beta \quad 199+\gamma$

0	2.4	1550	0	0	0	0	199
0.2	2.6	1597	47	0.0731	-0.1269	-5.59	193.41
1.0	3.4	1750	200	0.311	-0.689	-30.3	168.7
3.2	5.6	1987	437	0.680	-2.52	-111.1	87.9
3.6	6.0	2010	460	0.715	-2.885	-127.3	71.7
4.0	6.4	2031	481	0.748	-3.252	-143.5	55.5
4.2	6.6	2040	490	0.762	-3.483	-151.7	47.3
4.13	6.53	2037	487	0.757	-3.373	-148.7	50.3
4.14	6.54	2037	487.5	0.758	-3.386	-149.3.	49.7

7. Total Time For Plates To Melt
a. Since the melting point of the fuel is $1420^{\circ} \mathrm{C}$ or $2590^{\circ} \mathrm{F}$, the time for the temperature to rise from $2040^{\circ} \mathrm{F}$ to $2590^{\circ} \mathrm{F}$ will be calculated as though there were no water present.

$$
\begin{aligned}
& \frac{\Delta T}{\Delta t}=\frac{2.8 P}{w_{f} c_{f}} \quad \text { or } \\
& \Delta t=\frac{w_{f} c_{f}}{2.8 P}-174
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{T} & =2590-2040=550^{\circ} \mathbf{F} \\
W_{f} c_{E} & =42 \mathrm{Btu} /{ }^{\circ} \mathrm{F} \\
P & =34.1 \times 10^{6} \mathrm{Btu} / \mathrm{hr} \\
\frac{\Delta T}{\Delta t} & =\frac{(2.8)(3.41) 10^{7}}{(42)(3600)}=642^{\circ} \mathrm{F} / \mathrm{sec} \\
\Delta t & =\frac{\Delta T}{642}=\frac{550}{642}=0.86 \mathrm{sec}
\end{aligned}
$$

b. Total Time for Water Expelled and Not Returned

$$
t_{t}=6.54+0.86=7.4 \mathrm{sec}
$$

$S_{\text {heet }}$ No 14

[^0]: * From Alco

[^1]: * Perry, John H., Chem. Engr. ${ }_{-163}$ Hdbk., McGraw-Hill, 1950, p 481

