477 research outputs found
Updated constraints on non-standard neutrino interactions from Planck
We provide updated bounds on non-standard neutrino interactions based on data from the Planck satellite as well as auxiliary cosmological measurements. Two types of models are studied - A Fermi-like 4-point interaction and an interaction mediated by a light pseudoscalar - and we show that these two models are representative of models in which neutrinos either decouple or recouple in the early Universe. Current cosmological data constrain the effective 4-point coupling to be G(x) <= (0.06 GeV)(-2), corresponding to G(x) <= 2.5 x 10(7)GF. For non-standard pseudoscalar interactions we set a limit on the diagonal elements of the dimensionless coupling matrix, g(ij), of g(ii) <= 1.2 x 10(-7). For the off-diagonal elements which induce neutrino decay the bound is significantly stronger, corresponding to g(ij) <= 2.3 x 10(-11)(m/0.05 eV)(-2), or a lifetime constraint of iota >= 1.2 x 10(9) s (m/0.05 eV)(3). This is currently the strongest known bound on this particular type of neutrino decay. We finally note that extremely strong neutrino self-interactions which completely suppress anisotropic
Amplitudes of thermal and kinetic Sunyaev-Zel'dovich signals from small-scale CMB anisotropies
While the arcminute-scale Cosmic Microwave Background (CMB) anisotropies are
due to secondary effects, point sources dominate the total anisotropy power
spectrum. At high frequencies the point sources are primarily in the form of
dusty, star-forming galaxies. Both Herschel and Planck have recently measured
the anisotropy power spectrum of cosmic infrared background (CIB) generated by
dusty, star-forming galaxies from degree to sub-arcminute angular scales,
including the non-linear clustering of these galaxies at multipoles of 3000 to
6000 relevant to CMB secondary anisotropy studies. We scale the CIB angular
power spectra to CMB frequencies and interpret the combined WMAP-7 year and
arcminute-scale Atacama Cosmology Telescope (ACT) and South Pole Telescope
(SPT) CMB power spectra measurements to constrain the Sunyaev-Zel'dovich (SZ)
effects. Allowing the CIB clustering amplitude to vary, we constrain the
amplitudes of thermal and kinetic SZ power spectra at 150 GHz.Comment: 8 pages, 3 figures, 2 table
Color stabilization of apulian red wines through the sequential inoculation of starmerella bacillaris and saccharomyces cerevisiae
Mixed fermentation using Starmerella bacillaris and Saccharomyces cerevisiae has gained attention in recent years due to their ability to modulate the qualitative parameters of enological interest, such as the color intensity and stability of wine. In this study, three of the most important red Apulian varieties were fermented through two pure inoculations of Saccharomyces cerevisiae strains or the sequential inoculation of Saccharomyces cerevisiae after 48 h from Starmerella bacillaris. The evolution of anthocyanin profiles and chromatic characteristics were determined in the produced wines at draining off and after 18 months of bottle aging in order to assess the impact of the different fermentation protocols on the potential color stabilization and shelf-life. The chemical composition analysis showed titratable acidity and ethanol content exhibiting marked differences among wines after fermentation and aging. The 48 h inoculation delay produced wines with higher values of color intensity and color stability. This was ascribed to the increased presence of compounds, such as stable A-type vitisins and reddish/violet ethylidene-bridge flavonol-anthocyanin adducts, in the mixed fermentation. Our results proved that the sequential fermentation of Starmerella bacillaris and Saccharomyces cerevisiae could enhance the chromatic profile as well as the stability of the red wines, thus improving their organoleptic quality
KiDS+GAMA: Constraints on Horndeski gravity from combined large-scale structure probes
We present constraints on Horndeski gravity from a combined analysis of cosmic shear, galaxyâgalaxy lensing and galaxy clustering from 450deg2 of the Kilo-Degree Survey and the Galaxy And Mass Assembly survey.The Horndeski class of dark energy/modified gravity models includes the majority of universally coupled extensions to ÎCDM with one scalar field in addition to the metric. We study the functions of time that fully describe the evolution of linear perturbations in Horndeski gravity. Our results are compatible throughout with a ÎCDM model. By imposing gravitational wave constraints, we fix the tensor speed excess to zero and consider a subset of models including, e.g. quintessence and f(R) theories. Assuming proportionality of the Horndeski functions αB and αM (kinetic braiding and the Planck mass run rate, respectively) to the dark energy density fraction ΩDE(a) = 1 â Ωm(a), we find for the proportionality coefficients α^B=0.20+0.20â0.33 and α^M=0.25+0.19â0.29â . Our value of S8âĄÏ8Ωm/0.3âââââââ is in better agreement with the Planck estimate when measured in the enlarged Horndeski parameter space than in a pure ÎCDM scenario. In our joint three-probe analysis, we report a downward shift of the S8 best-fitting value from the Planck measurement of ÎS8=0.016+0.048â0.046 in Horndeski gravity, compared to ÎS8=0.059+0.040â0.039 in ÎCDM. Our constraints are robust to the modelling uncertainty of the non-linear matter power spectrum in Horndeski gravity. Our likelihood code for multiprobe analysis in both ÎCDM and Horndeski gravity is publicly available at https://github.com/alessiospuriomancini/KiDSHorndeski
A comprehensive molecular cytogenetic analysis of chromosome rearrangements in gibbons.
Chromosome rearrangements in small apes are up to 20 times more frequent than in most mammals. Because of their complexity, the full extent of chromosome evolution in these hominoids is not yet fully documented. However, previous work with array painting, BAC-FISH, and selective sequencing in two of the four karyomorphs has shown that high-resolution methods can precisely define chromosome breakpoints and map the complex flow of evolutionary chromosome rearrangements. Here we use these tools to precisely define the rearrangements that have occurred in the remaining two karyomorphs, genera Symphalangus (2n = 50) and Hoolock (2n = 38). This research provides the most comprehensive insight into the evolutionary origins of chromosome rearrangements involved in transforming small apes genome. Bioinformatics analyses of the humanâgibbon synteny breakpoints revealed association with transposable elements and segmental duplications, providing some insight into the mechanisms that might have promoted rearrangements in small apes. In the near future, the comparison of gibbon genome sequences will provide novel insights to test hypotheses concerning the mechanisms of chromosome evolution. The precise definition of synteny block boundaries and orientation, chromosomal fusions, and centromere repositioning events presented here will facilitate genome sequence assembly for these close relatives of humans
Cosmological constraints on variations of the fine structure constant at the epoch of recombination
n/
Light Higgsino from Axion Dark Radiation
The recent observations imply that there is an extra relativistic degree of
freedom coined dark radiation. We argue that the QCD axion is a plausible
candidate for the dark radiation, not only because of its extremely small mass,
but also because in the supersymmetric extension of the Peccei-Quinn mechanism
the saxion tends to dominate the Universe and decays into axions with a sizable
branching fraction. We show that the Higgsino mixing parameter mu is bounded
from above when the axions produced at the saxion decays constitute the dark
radiation: mu \lesssim 300 GeV for a saxion lighter than 2m_W, and mu less than
the saxion mass otherwise. Interestingly, the Higgsino can be light enough to
be within the reach of LHC and/or ILC even when the other superparticles are
heavy with mass about 1 TeV or higher. We also estimate the abundance of axino
produced by the decays of Higgsino and saxion.Comment: 18 pages, 1 figure; published in JHE
Dark Radiation and Dark Matter in Large Volume Compactifications
We argue that dark radiation is naturally generated from the decay of the
overall volume modulus in the LARGE volume scenario. We consider both
sequestered and non-sequestered cases, and find that the axionic superpartner
of the modulus is produced by the modulus decay and it can account for the dark
radiation suggested by observations, while the modulus decay through the
Giudice-Masiero term gives the dominant contribution to the total decay rate.
In the sequestered case, the lightest supersymmetric particles produced by the
modulus decay can naturally account for the observed dark matter density. In
the non-sequestered case, on the other hand, the supersymmetric particles are
not produced by the modulus decay, since the soft masses are of order the heavy
gravitino mass. The QCD axion will then be a plausible dark matter candidate.Comment: 27 pages, 4 figures; version 3: version published in JHE
- âŠ