6,067 research outputs found

    Redundant electronic circuit provides fail-safe control

    Get PDF
    Circuit using dual control amplifiers and dual position demand potentiometers powered from separate sources is used for reliable hydraulic valve controller that prevents closure of valve when control circuits fail, and maintains valve control to close tolerance for more common modes of controller failure

    Antenna Technology for QUASAT application

    Get PDF
    A hybrid growth version of the advanced Sunflower, or precision deployable, antenna was adopted as the configuration proposed for the QUASAT very long baseline interferometry mission. The antenna consists of rigid panels of graphite-epoxy facesheets covering aluminum honeycomb sandwich. The six main folding panels are hinged to a cantilevered support ring attached to the periphery of the center section. Six pairs of intermediate panels are located between these panels and are hinged to each other and to the main panels. The flight configuration, antenna weight, a mass properties, frequency, and contour tolerance are discussed. The advantages of the solid antenna surface cover an all-mesh contour are examined

    Mean-field dynamical density functional theory

    Full text link
    We examine the out-of-equilibrium dynamical evolution of density profiles of ultrasoft particles under time-varying external confining potentials in three spatial dimensions. The theoretical formalism employed is the dynamical density functional theory (DDFT) of Marini Bettolo Marconi and Tarazona [J. Chem. Phys. {\bf 110}, 8032 (1999)], supplied by an equilibrium excess free energy functional that is essentially exact. We complement our theoretical analysis by carrying out extensive Brownian Dynamics simulations. We find excellent agreement between theory and simulations for the whole time evolution of density profiles, demonstrating thereby the validity of the DDFT when an accurate equilibrium free energy functional is employed.Comment: 8 pagers, 4 figure

    Dynamical density functional theory for dense atomic liquids

    Get PDF
    Starting from Newton's equations of motion, we derive a dynamical density functional theory (DDFT) applicable to atomic liquids. The theory has the feature that it requires as input the Helmholtz free energy functional from equilibrium density functional theory. This means that, given a reliable equilibrium free energy functional, the correct equilibrium fluid density profile is guaranteed. We show that when the isothermal compressibility is small, the DDFT generates the correct value for the speed of sound in a dense liquid. We also interpret the theory as a dynamical equation for a coarse grained fluid density and show that the theory can be used (making further approximations) to derive the standard mode coupling theory that is used to describe the glass transition. The present theory should provide a useful starting point for describing the dynamics of inhomogeneous atomic fluids.Comment: 14 pages, accepted for publication in J. Phys.: Condens. Matte

    Biomimetic direction of arrival estimation for resolving front-back confusions in hearing aids

    Get PDF
    Sound sources at the same angle in front or behind a two-microphone array (e.g., bilateral hearing aids) produce the same time delay and two estimates for the direction of arrival: A front-back confusion. The auditory system can resolve this issue using head movements. To resolve front-back confusion for hearing-aid algorithms, head movement was measured using an inertial sensor. Successive time-delay estimates between the microphones are shifted clockwise and counterclockwise by the head movement between estimates and aggregated in two histograms. The histogram with the largest peak after multiple estimates predicted the correct hemifield for the source, eliminating the front-back confusions

    The van Hove distribution function for Brownian hard spheres: dynamical test particle theory and computer simulations for bulk dynamics

    Get PDF
    We describe a test particle approach based on dynamical density functional theory (DDFT) for studying the correlated time evolution of the particles that constitute a fluid. Our theory provides a means of calculating the van Hove distribution function by treating its self and distinct parts as the two components of a binary fluid mixture, with the `self' component having only one particle, the `distinct' component consisting of all the other particles, and using DDFT to calculate the time evolution of the density profiles for the two components. We apply this approach to a bulk fluid of Brownian hard spheres and compare to results for the van Hove function and the intermediate scattering function from Brownian dynamics computer simulations. We find good agreement at low and intermediate densities using the very simple Ramakrishnan-Yussouff [Phys. Rev. B 19, 2775 (1979)] approximation for the excess free energy functional. Since the DDFT is based on the equilibrium Helmholtz free energy functional, we can probe a free energy landscape that underlies the dynamics. Within the mean-field approximation we find that as the particle density increases, this landscape develops a minimum, while an exact treatment of a model confined situation shows that for an ergodic fluid this landscape should be monotonic. We discuss possible implications for slow, glassy and arrested dynamics at high densities.Comment: Submitted to Journal of Chemical Physic

    Criticality and phase separation in a two-dimensional binary colloidal fluid induced by the solvent critical behavior

    Get PDF
    We present an experimental and theoretical study of the phase behavior of a binary mixture of colloids with opposite adsorption preferences in a critical solvent. As a result of the attractive and repulsive critical Casimir forces, the critical fluctuations of the solvent lead to a further critical point in the colloidal system, i.e. to a critical colloidal-liquid--colloidal-liquid demixing phase transition which is controlled by the solvent temperature. Our experimental findings are in good agreement with calculations based on a simple approximation for the free energy of the system.Comment: 5 pages, 5 figures, to be published in Europhysics Letter

    Heritability of testosterone levels in 12-year-old twins and its relation to pubertal development

    Get PDF
    The aim of this study was to estimate the heritability of variation in testosterone levels in 12-year-old children, and to explore the overlap in genetic and environmental influences on circulating testosterone levels and androgen dependent pubertal development. Midday salivary testosterone samples were collected on two consecutive days in a sample of 183 unselected twin pairs. Androgen induced pubertal development was assessed using self report Tanner scales of pubic hair development (boys and girls) and genital development (boys). A significant contribution of genetic effects to the variance in testosterone levels was found. Heritability was approximately 50% in both boys and girls. The remaining proportion of the variance in testosterone levels could be explained by non-shared environmental influences. The relatively high correlation between testosterone levels of opposite sex dizygotic twins suggests that sex differences in genes influencing variation in testosterone levels have not yet developed in pre- and early puberty. Variance in pubertal development was explained by a large genetic component, moderate shared environmental influences, and a small non-shared environmental effect. Testosterone levels correlated moderately (r = .31) with pubertal development; the covariance between testosterone levels and pubertal development was entirely accounted for by genetic influences

    Note on the hydrodynamic description of thin nematic films: strong anchoring model

    Get PDF
    We discuss the long-wave hydrodynamic model for a thin film of nematic liquid crystal in the limit of strong anchoring at the free surface and at the substrate. We rigorously clarify how the elastic energy enters the evolution equation for the film thickness in order to provide a solid basis for further investigation: several conflicting models exist in the literature that predict qualitatively different behaviour. We consolidate the various approaches and show that the long-wave model derived through an asymptotic expansion of the full nemato-hydrodynamic equations with consistent boundary conditions agrees with the model one obtains by employing a thermodynamically motivated gradient dynamics formulation based on an underlying free energy functional. As a result, we find that in the case of strong anchoring the elastic distortion energy is always stabilising. To support the discussion in the main part of the paper, an appendix gives the full derivation of the evolution equation for the film thickness via asymptotic expansion

    Thermodynamically consistent description of the hydrodynamics of free surfaces covered by insoluble surfactants of high concentration

    Get PDF
    In this paper we propose several models that describe the dynamics of liquid films which are covered by a high concentration layer of insoluble surfactant. First, we briefly review the 'classical' hydrodynamic form of the coupled evolution equations for the film height and surfactant concentration that are well established for small concentrations. Then we re-formulate the basic model as a gradient dynamics based on an underlying free energy functional that accounts for wettability and capillarity. Based on this re-formulation in the framework of nonequilibrium thermodynamics, we propose extensions of the basic hydrodynamic model that account for (i) nonlinear equations of state, (ii) surfactant-dependent wettability, (iii) surfactant phase transitions, and (iv) substrate-mediated condensation. In passing, we discuss important differences to most of the models found in the literature.Comment: 31 pages, 2 figure
    corecore