447 research outputs found

    Ubiq: A System to Build Flexible Social Virtual Reality Experiences

    Get PDF
    While they have long been a subject of academic study, social virtual reality (SVR) systems are now attracting increasingly large audiences on current consumer virtual reality systems. The design space of SVR systems is very large, and relatively little is known about how these systems should be constructed in order to be usable and efficient. In this paper we present Ubiq, a toolkit that focuses on facilitating the construction of SVR systems. We argue for the design strategy of Ubiq and its scope. Ubiq is built on the Unity platform. It provides core functionality of many SVR systems such as connection management, voice, avatars, etc. However, its design remains easy to extend. We demonstrate examples built on Ubiq and how it has been successfully used in classroom teaching. Ubiq is open source (Apache License) and thus enables several use cases that commercial systems cannot

    Ubiq: A System to Build Flexible Social Virtual Reality Experiences

    Get PDF
    While they have long been a subject of academic study, social virtual reality (SVR) systems are now attracting increasingly large audiences on current consumer virtual reality systems. The design space of SVR systems is very large, and relatively little is known about how these systems should be constructed in order to be usable and efficient. In this paper we present Ubiq, a toolkit that focuses on facilitating the construction of SVR systems. We argue for the design strategy of Ubiq and its scope. Ubiq is built on the Unity platform. It provides core functionality of many SVR systems such as connection management, voice, avatars, etc. However, its design remains easy to extend. We demonstrate examples built on Ubiq and how it has been successfully used in classroom teaching. Ubiq is open source (Apache License) and thus enables several use cases that commercial systems cannot

    Rapid Environmental Change over the Past Decade Revealed by Isotopic Analysis of the California Mussel in the Northeast Pacific

    Get PDF
    The anthropogenic input of fossil fuel carbon into the atmosphere results in increased carbon dioxide (CO2) into the oceans, a process that lowers seawater pH, decreases alkalinity and can inhibit the production of shell material. Corrosive water has recently been documented in the northeast Pacific, along with a rapid decline in seawater pH over the past decade. A lack of instrumentation prior to the 1990s means that we have no indication whether these carbon cycle changes have precedence or are a response to recent anthropogenic CO2 inputs. We analyzed stable carbon and oxygen isotopes (δ13C, δ18O) of decade-old California mussel shells (Mytilus californianus) in the context of an instrumental seawater record of the same length. We further compared modern shells to shells from 1000 to 1340 years BP and from the 1960s to the present and show declines in the δ13C of modern shells that have no historical precedent. Our finding of decline in another shelled mollusk (limpet) and our extensive environmental data show that these δ13C declines are unexplained by changes to the coastal food web, upwelling regime, or local circulation. Our observed decline in shell δ13C parallels other signs of rapid changes to the nearshore carbon cycle in the Pacific, including a decline in pH that is an order of magnitude greater than predicted by an equilibrium response to rising atmospheric CO2, the presence of low pH water throughout the region, and a record of a similarly steep decline in δ13C in algae in the Gulf of Alaska. These unprecedented changes and the lack of a clear causal variable underscores the need for better quantifying carbon dynamics in nearshore environments

    [18F]FDG-6-P as a novel in vivo tool for imaging staphylococcal infections

    Get PDF
    Background Management of infection is a major clinical problem. Staphylococcus aureus is a Gram-positive bacterium which colonises approximately one third of the adult human population. Staphylococcal infections can be life-threatening and are frequently complicated by multi-antibiotic resistant strains including methicillin-resistant S. aureus (MRSA). Fluorodeoxyglucose ([18F]FDG) imaging has been used to identify infection sites; however, it is unable to distinguish between sterile inflammation and bacterial load. We have modified [18F]FDG by phosphorylation, producing [18F]FDG-6-P to facilitate specific uptake and accumulation by S. aureus through hexose phosphate transporters, which are not present in mammalian cell membranes. This approach leads to the specific uptake of the radiopharmaceutical into the bacteria and not the sites of sterile inflammation. Methods [18F]FDG-6-P was synthesised from [18F]FDG. Yield, purity and stability were confirmed by RP-HPLC and iTLC. The specificity of [18F]FDG-6-P for the bacterial universal hexose phosphate transporter (UHPT) was confirmed with S. aureus and mammalian cell assays in vitro. Whole body biodistribution and accumulation of [18F]FDG-6-P at the sites of bioluminescent staphylococcal infection were established in a murine foreign body infection model. Results In vitro validation assays demonstrated that [18F]FDG-6-P was stable and specifically transported into S. aureus but not mammalian cells. [18F]FDG-6-P was elevated at the sites of S. aureus infection in vivo compared to uninfected controls; however, the increase in signal was not significant and unexpectedly, the whole-body biodistribution of [18F]FDG-6-P was similar to that of [18F]FDG. Conclusions Despite conclusive in vitro validation, [18F]FDG-6-P did not behave as predicted in vivo. However at the site of known infection, [18F]FDG-6-P levels were elevated compared with uninfected controls, providing a higher signal-to-noise ratio. The bacterial UHPT can transport hexose phosphates other than glucose, and therefore alternative sugars may show differential biodistribution and provide a means for specific bacterial detection

    Conditional variable importance for random forests

    Get PDF
    Random forests are becoming increasingly popular in many scientific fields because they can cope with ``small n large p'' problems, complex interactions and even highly correlated predictor variables. Their variable importance measures have recently been suggested as screening tools for, e.g., gene expression studies. However, these variable importance measures show a bias towards correlated predictor variables. We identify two mechanisms responsible for this finding: (i) A preference for the selection of correlated predictors in the tree building process and (ii) an additional advantage for correlated predictor variables induced by the unconditional permutation scheme that is employed in the computation of the variable importance measure. Based on these considerations we develop a new, conditional permutation scheme for the computation of the variable importance measure. The resulting conditional variable importance is shown to reflect the true impact of each predictor variable more reliably than the original marginal approach

    Role of Hypothalamic Melanocortin System in Adaptation of Food Intake to Food Protein Increase in Mice

    Get PDF
    The hypothalamic melanocortin system—the melanocortin receptor of type 4 (MC4R) and its ligands: α-melanin-stimulating hormone (α-MSH, agonist, inducing hypophagia), and agouti-related protein (AgRP, antagonist, inducing hyperphagia)—is considered to play a central role in the control of food intake. We tested its implication in the mediation of the hunger-curbing effects of protein-enriched diets (PED) in mice. Whereas there was a 20% decrease in food intake in mice fed on the PED, compared to mice fed on an isocaloric starch-enriched diet, there was a paradoxical decrease in expression of the hypothalamic proopiomelanocortin gene, precursor of α-MSH, and increase in expression of the gene encoding AgRP. The hypophagia effect of PED took place in mice with invalidation of either MC4R or POMC, and was even strengthened in mice with ablation of the AgRP-expressing neurons. These data strongly suggest that the hypothalamic melanocortin system does not mediate the hunger-curbing effects induced by changes in the macronutrient composition of food. Rather, the role of this system might be to defend the body against the variations in food intake generated by the nutritional environment
    corecore