1,375 research outputs found
Finite-size effects on the Hamiltonian dynamics of the XY-model
The dynamical properties of the finite-size magnetization M in the critical
region T<T_{KTB} of the planar rotor model on a L x L square lattice are
analyzed by means of microcanonical simulations . The behavior of the q=0
structure factor at high frequencies is consistent with field-theoretical
results, but new additional features occur at lower frequencies. The motion of
M determines a region of spectral lines and the presence of a central peak,
which we attribute to phase diffusion. Near T_{KTB} the diffusion constant
scales with system size as D ~ L^{-1.6(3)}.Comment: To be published in Europhysics Letter
Evaluation of two interaction techniques for visualization of dynamic graphs
Several techniques for visualization of dynamic graphs are based on different
spatial arrangements of a temporal sequence of node-link diagrams. Many studies
in the literature have investigated the importance of maintaining the user's
mental map across this temporal sequence, but usually each layout is considered
as a static graph drawing and the effect of user interaction is disregarded. We
conducted a task-based controlled experiment to assess the effectiveness of two
basic interaction techniques: the adjustment of the layout stability and the
highlighting of adjacent nodes and edges. We found that generally both
interaction techniques increase accuracy, sometimes at the cost of longer
completion times, and that the highlighting outclasses the stability adjustment
for many tasks except the most complex ones.Comment: Appears in the Proceedings of the 24th International Symposium on
Graph Drawing and Network Visualization (GD 2016
Dark Matter Spin-Dependent Limits for WIMP Interactions on 19-F by PICASSO
The PICASSO experiment at SNOLAB reports new results for spin-dependent WIMP
interactions on F using the superheated droplet technique. A new
generation of detectors and new features which enable background discrimination
via the rejection of non-particle induced events are described. First results
are presented for a subset of two detectors with target masses of F of
65 g and 69 g respectively and a total exposure of 13.75 0.48 kgd. No
dark matter signal was found and for WIMP masses around 24 GeV/c new limits
have been obtained on the spin-dependent cross section on F of
= 13.9 pb (90% C.L.) which can be converted into cross section
limits on protons and neutrons of = 0.16 pb and = 2.60 pb
respectively (90% C.L). The obtained limits on protons restrict recent
interpretations of the DAMA/LIBRA annual modulations in terms of spin-dependent
interactions.Comment: Revised version, accepted for publication in Phys. Lett. B, 20 pages,
7 figure
Organizing, supporting and linking the world marine biodiversity research community
Publisher PDFPeer reviewe
Gamma-ray Observations Under Bright Moonlight with VERITAS
Imaging atmospheric Cherenkov telescopes (IACTs) are equipped with sensitive
photomultiplier tube (PMT) cameras. Exposure to high levels of background
illumination degrades the efficiency of and potentially destroys these
photo-detectors over time, so IACTs cannot be operated in the same
configuration in the presence of bright moonlight as under dark skies. Since
September 2012, observations have been carried out with the VERITAS IACTs under
bright moonlight (defined as about three times the night-sky-background (NSB)
of a dark extragalactic field, typically occurring when Moon illumination >
35%) in two observing modes, firstly by reducing the voltage applied to the
PMTs and, secondly, with the addition of ultra-violet (UV) bandpass filters to
the cameras. This has allowed observations at up to about 30 times previous NSB
levels (around 80% Moon illumination), resulting in 30% more observing time
between the two modes over the course of a year. These additional observations
have already allowed for the detection of a flare from the 1ES 1727+502 and for
an observing program targeting a measurement of the cosmic-ray positron
fraction. We provide details of these new observing modes and their performance
relative to the standard VERITAS observations
Discovery of very-high-energy emission from RGB J2243+203 and derivation of its redshift upper limit
Very-high-energy (VHE; 100 GeV) gamma-ray emission from the blazar RGB
J2243+203 was discovered with the VERITAS Cherenkov telescope array, during the
period between 21 and 24 December 2014. The VERITAS energy spectrum from this
source can be fit by a power law with a photon index of , and a
flux normalization at 0.15 TeV of . The integrated
\textit{Fermi}-LAT flux from 1 GeV to 100 GeV during the VERITAS detection is
, which is an order of
magnitude larger than the four-year-averaged flux in the same energy range
reported in the 3FGL catalog, (). The detection with VERITAS
triggered observations in the X-ray band with the \textit{Swift}-XRT. However,
due to scheduling constraints \textit{Swift}-XRT observations were performed 67
hours after the VERITAS detection, not simultaneous with the VERITAS
observations. The observed X-ray energy spectrum between 2 keV and 10 keV can
be fitted with a power-law with a spectral index of , and the
integrated photon flux in the same energy band is . EBL model-dependent upper limits
of the blazar redshift have been derived. Depending on the EBL model used, the
upper limit varies in the range from z to z
Very-High-Energy -Ray Observations of the Blazar 1ES 2344+514 with VERITAS
We present very-high-energy -ray observations of the BL Lac object
1ES 2344+514 taken by the Very Energetic Radiation Imaging Telescope Array
System (VERITAS) between 2007 and 2015. 1ES 2344+514 is detected with a
statistical significance above background of in hours
(livetime) of observations, making this the most comprehensive very-high-energy
study of 1ES 2344+514 to date. Using these observations the temporal properties
of 1ES 2344+514 are studied on short and long times scales. We fit a constant
flux model to nightly- and seasonally-binned light curves and apply a
fractional variability test, to determine the stability of the source on
different timescales. We reject the constant-flux model for the 2007-2008 and
2014-2015 nightly-binned light curves and for the long-term seasonally-binned
light curve at the level. The spectra of the time-averaged emission
before and after correction for attenuation by the extragalactic background
light are obtained. The observed time-averaged spectrum above 200 GeV is
satisfactorily fitted () by a power-law function with
index and extends to at least 8
TeV. The extragalactic-background-light-deabsorbed spectrum is adequately fit
() by a power-law function with index while an F-test indicates that the power-law with
exponential cutoff function provides a marginally-better fit ( =
) at the 2.1 level. The source location is found to be
consistent with the published radio location and its spatial extent is
consistent with a point source.Comment: 7 pages, 2 figures. Published in Monthly Notices of the Royal
Astronomical Societ
- …
