11 research outputs found

    Dissipation effects in driven quantum many-body systems

    Get PDF
    In this thesis, the effect of dissipation is investigated in driven models of interest for quantum annealing and quantum topological pumping. Dissipation comes from coupling the system to a bosonic bath at thermal equilibrium, using the usual Caldeira-Leggett setting. The first original results presented deal with the dissipative Landau-Zener model, where we revisit the issue of whether dissipation can improve the final ground state probability. We shed light upon the importance of the coupling direction. Then, we move to dissipation effects in the quantum annealing of the Ising chain in transverse field: we study the conditions for the emergence or absence of an optimal annealing velocity, depending on system-bath interaction strength and bath temperature. Finally, we explore dissipation effects in topological pumping in the periodically-driven Rice-Mele model, where we find that a bath at low temperature can improve the pumping performance when adiabaticity is not perfectly fulfilled

    Quantum solitons in the XXZ model with staggered external magnetic field

    Get PDF
    The 1-D 1/2-spin XXZ model with staggered external magnetic field, when restricting to low field, can be mapped into the quantum sine-Gordon model through bosonization: this assures the presence of soliton, antisoliton and breather excitations in it. In particular, the action of the staggered field opens a gap so that these physical objects are stable against energetic fluctuations. In the present work, this model is studied both analytically and numerically. On the one hand, analytical calculations are made to solve exactly the model through Bethe ansatz: the solution for the XX + h staggered model is found first by means of Jordan-Wigner transformation and then through Bethe ansatz; after this stage, efforts are made to extend the latter approach to the XXZ + h staggered model (without finding its exact solution). On the other hand, the energies of the elementary soliton excitations are pinpointed through static DMRG (Density Matrix Renormalization Group) for different values of the parameters in the hamiltonian. Breathers are found to be in the antiferromagnetic region only, while solitons and antisolitons are present both in the ferromagnetic and antiferromagnetic region. Their single-site z-magnetization expectation values are also computed to see how they appear in real space, and time-dependent DMRG is employed to realize quenches on the hamiltonian parameters to monitor their time-evolution. The results obtained reveal the quantum nature of these objects and provide some information about their features. Further studies and a better understanding of their properties could bring to the realization of a two-level state through a soliton-antisoliton pair, in order to implement a qubit

    Dissipation assisted Thouless pumping in the Rice-Mele model

    Get PDF
    We investigate the effect of dissipation from a thermal environment on topological pumping in the periodically-driven Rice-Mele model. We report that dissipation can improve the robustness of pumping quantisation in a regime of finite driving frequencies. Specifically, in this regime, a low-temperature dissipative dynamics can lead to a pumped charge that is much closer to the Thouless quantised value, compared to a coherent evolution. We understand this effect in the Floquet framework: dissipation increases the population of a Floquet band which shows a topological winding, where pumping is essentially quantised. This finding is a step towards understanding a potentially very useful resource to exploit in experiments, where dissipation effects are unavoidable. We consider small couplings with the environment and we use a Bloch-Redfield quantum master equation approach for our numerics: Comparing these results with an exact MPS numerical treatment we find that the quantum master equation works very well also at low temperature, a quite remarkable fact.Comment: 21 pages, 8 figure

    Entanglement of formation of mixed many-body quantum states via Tree Tensor Operators

    Full text link
    We present a numerical strategy to efficiently estimate bipartite entanglement measures, and in particular the Entanglement of Formation, for many-body quantum systems on a lattice. Our approach exploits the Tree Tensor Operator tensor network ansatz, a positive loopless representation for density matrices which, as we demonstrate, efficiently encodes information on bipartite entanglement, enabling the up-scaling of entanglement estimation. Employing this technique, we observe a finite-size scaling law for the entanglement of formation in 1D critical lattice models at finite temperature for up to 128 spins, extending to mixed states the scaling law for the entanglement entropy

    Erratum: Dissipative Landau-Zener problem and thermally assisted quantum annealing [Physical Review B 96, 0543001 (2017)]

    No full text
    Figure 6 has a typographical error in the key: The labels corresponding to RWA and without the RWA are wrongly switched. The caption as well as all the rest of the paper are nevertheless correct and unaffected by this error. We show the exact figure here below with its original caption from the paper. (Figure Presented)

    Optimal working point in dissipative quantum annealing

    Get PDF
    We study the effect of a thermal environment on the quantum annealing dynamics of a transverse-field Ising chain. The environment is modeled as a single Ohmic bath of quantum harmonic oscillators weakly interacting with the total transverse magnetization of the chain in a translationally invariant manner. We show that the density of defects generated at the end of the annealing process displays a minimum as a function of the annealing time, the so-called optimal working point, only in rather special regions of the bath temperature and coupling strength plane. We discuss the relevance of our results for current and future experimental implementations with quantum annealing hardware

    Dissipative Landau-Zener problem and thermally assisted Quantum Annealing

    No full text
    We revisit here the issue of thermally assisted Quantum Annealing by a detailed study of the dissipative Landau-Zener problem in the presence of a Caldeira-Leggett bath of harmonic oscillators, using both a weak-coupling quantum master equation and a quasiadiabatic path-integral approach. Building on the known zero-temperature exact results [Wubs, Phys. Rev. Lett. 97, 200404 (2006)PRLTAO0031-900710.1103/PhysRevLett.97.200404], we show that a finite temperature bath can have a beneficial effect on the ground-state probability only if it couples also to a spin direction that is transverse with respect to the driving field, while no improvement is obtained for the more commonly studied purely longitudinal coupling. In particular, we also highlight that, for a transverse coupling, raising the bath temperature further improves the ground-state probability in the fast-driving regime. We discuss the relevance of these findings for the current quantum-annealing flux qubit chips

    Dynamics of simulated quantum annealing in random Ising chains

    No full text
    Simulated quantum annealing (SQA) is a classical computational strategy that emulates a quantum annealing (QA) dynamics through a path-integral Monte Carlo whose parameters are changed during the simulation. Here we apply SQA to the one-dimensional transverse field Ising chain, where previous works have shown that, in the presence of disorder, a coherent QA provides a quadratic speedup with respect to classical simulated annealing, with a density of Kibble-Zurek defects decaying as \u3c1KZQA 3c(log10\u3c4)-2 as opposed to \u3c1KZSA 3c(log10\u3c4)-1, \u3c4 being the total annealing time, while for the ordered case both give the same power law \u3c1KZQA 48\u3c1KZSA 3c\u3c4-1/2. We show that the dynamics of SQA, while correctly capturing the Kibble-Zurek scaling \u3c4-1/2 for the ordered case, is unable to reproduce the QA dynamics in the disordered case at intermediate \u3c4. We analyze and discuss several issues related to the choice of the Monte Carlo moves (local or global in space), the time-continuum limit needed to eliminate the Trotter-discretization error, and the long autocorrelation times shown by a local-in-space Monte Carlo dynamics for large disordered samples

    Optimal working point in digitized quantum annealing

    No full text
    We present a study of the digitized quantum annealing protocol proposed by R. Barends et al. [Nature (London) 534, 222 (2016)NATUAS0028-083610.1038/nature17658]. Our analysis, performed on the benchmark case of a transverse Ising chain problem, shows that the algorithm has a well-defined optimal working point for the annealing time \u3c4Popt, scaling as \u3c4Popt 3cP, where P is the number of digital Trotter steps, beyond which the residual energy error shoots up toward the value characteristic of the maximally disordered state. We present an analytical analysis for the translationally invariant transverse Ising chain case, but our numerical evidence suggests that this scenario is more general, surviving, for instance, the presence of disorder
    corecore