7,523 research outputs found

    A New Galactic Extinction Map of the Cygnus Region

    Full text link
    We have made a Galactic extinction map of the Cygnus region with 5' spatial resolution. The selected area is 80^\circ to 90^\circ in the Galactic longitude and -4^\circ to 8^\circ in the Galactic latitude. The intensity at 140 \mum is derived from the intensities at 60 and 100 \mum of the IRAS data using the tight correlation between 60, 100, and 140 \mum found in the Galactic plane. The dust temperature and optical depth are calculated with 5' resolution from the 140 and 100 \mum intensity, and Av is calculated from the optical depth. In the selected area, the mean dust temperature is 17 K, the minimum is 16 K, and the maximum is 30 K. The mean Av is 6.5 mag, the minimum is 0.5 mag, and the maximum is 11 mag. The dust temperature distribution shows significant spatial variation on smaller scales down to 5'. Because the present study can trace the 5'-scale spatial variation of the extinction, it has an advantage over the previous studies, such as the one by Schlegel, Finkbeiner, & Davis, who used the COBE/DIRBE data to derive the dust temperature distribution with a spatial resolution of 1^\circ. The difference of Av between our map and Schlegel et al.'s is \pm 3 mag. A new extinction map of the entire sky can be produced by applying the present method.Comment: 27 pages, 14 figures, accepted for publication in Ap

    The UN in the lab

    Get PDF
    We consider two alternatives to inaction for governments combating terrorism, which we term Defense and Prevention. Defense consists of investing in resources that reduce the impact of an attack, and generates a negative externality to other governments, making their countries a more attractive objective for terrorists. In contrast, Prevention, which consists of investing in resources that reduce the ability of the terrorist organization to mount an attack, creates a positive externality by reducing the overall threat of terrorism for all. This interaction is captured using a simple 3×3 “Nested Prisoner’s Dilemma” game, with a single Nash equilibrium where both countries choose Defense. Due to the structure of this interaction, countries can benefit from coordination of policy choices, and international institutions (such as the UN) can be utilized to facilitate coordination by implementing agreements to share the burden of Prevention. We introduce an institution that implements a burden-sharing policy for Prevention, and investigate experimentally whether subjects coordinate on a cooperative strategy more frequently under different levels of cost sharing. In all treatments, burden sharing leaves the Prisoner’s Dilemma structure and Nash equilibrium of the game unchanged. We compare three levels of burden sharing to a baseline in a between-subjects design, and find that burden sharing generates a non-linear effect on the choice of the efficient Prevention strategy and overall performance. Only an institution supporting a high level of mandatory burden sharing generates a significant improvement in the use of the Prevention strategy

    Jets and Outflows From Star to Cloud: Observations Confront Theory

    Full text link
    In this review we focus on the role jets and outflows play in the star and planet formation process. Our essential question can be posed as follows: are jets/outflows merely an epiphenomenon associated with star formation or do they play an important role in mediating the physics of assembling stars both individually and globally? We address this question by reviewing the current state of observations and their key points of contact with theory. Our review of jet/outflow phenomena is organized into three length-scale domains: Source and Disk Scales (0.11020.1-10^2 au) where the connection with protostellar and disk evolution theories is paramount; Envelope Scales (10210510^2-10^5 au) where the chemistry and propagation shed further light on the jet launching process, its variability and its impact on the infalling envelope; Parent Cloud Scales (10510610^5-10^6 au) where global momentum injection into cluster/cloud environments become relevant. Issues of feedback are of particular importance on the smallest scales where planet formation regions in a disk may be impacted by the presence of disk winds, irradiation by jet shocks or shielding by the winds. Feedback on envelope scales may determine the final stellar mass (core-to-star efficiency) and envelope dissipation. Feedback also plays an important role on the larger scales with outflows contributing to turbulent support within clusters including alteration of cluster star formation efficiencies (feedback on larger scales currently appears unlikely). A particularly novel dimension of our review is that we consider results on jet dynamics from the emerging field of High Energy Density Laboratory Astrophysics (HEDLA). HEDLA is now providing direct insights into the 3-D dynamics of fully magnetized, hypersonic, radiative outflows.Comment: Accepted for publication as a chapter in Protostars and Planets VI, University of Arizona Press (2014), eds. H. Beuther, R. Klessen, C. Dullemond, Th. Hennin

    Critical Comparison between Modified Monier-Williams and Electrochemical Methods to Determine Sulfite in Aqueous Solutions

    Get PDF
    In the present work, known concentration of sulfite aqueous solutions in the presence and absence of gallic acid was measured to corroborate the validity of modified Monier-Williams method. Free and bound-sulfite was estimated by differential pulse voltammetry. To our surprise, the modified Monier-Williams method (also known as aspiration method) showed to be very inaccurate for free-sulfite, although suitable for bound-sulfite determination. The differential pulse approach, using the standard addition method and a correction coefficient, proved to be swift, cheap, and very precise and accurate

    Performing innocence: violence and the nation in Ian McEwan’s Saturday and Sunjeev Sahota’s Ours Are the Streets

    Get PDF
    British normative society and post-9/11 fiction borrow from the discourse of American exceptionalism (including the fall from innocence to experience, the desire to create or preserve a better world, a ‘Messianic consciousness’ reflecting the arrogance of virtue, the development of narratives of heroism and goodness tied to nation-building, and the use of the above to justify ‘exemptionalism’) to expose and query the entitlement of those within the narrative home of Britishness and the outsider-status of those used to define its borders. This article discusses Ian McEwan’s Saturday and Sunjeev Sahota’s Ours Are the Streets, arguing that they illustrate a turning point in Britain’s imagination of itself as a nation in a struggle over Britishness which is predicated on notions of violence and innocence. Since 9/11 the debate about Britishness has used innocence as a constitutive inside of the nation and direct violence as an exclusionary characteristic. McEwan satirizes this rhetoric of innocence whereas Sahota challenges it. Both novels illustrate how post-9/11 British fiction deals with politics as war, placing violence at the heart of society. McEwan parodies the point of view of British normative society by allowing his main character to justify his privileged position under the guise of arguing for the current social and international status quo. Sahota charts the journey of those who are caught between the rejection of unjust social structures and the desire to fit within them, depicting his protagonist’s misguided attempt to redefine the British nation through terrorism. Violence and exceptionalism are central to both novels, which portray a turn in the imagining of Britain. The events of 9/11 can therefore be seen not just as a historical turning point but as a turn in Britain’s imagination of itself

    Dust and HCO+ Gas in the Star Forming Core W3-SE

    Full text link
    We report new results from CARMA observations of both continuum and HCO+(1-0) emission at 3.4 mm from W3-SE, a molecular core of intermediate mass, together with the continuum observations at 1.1 and 0.85/0.45 mm with the SMA and JCMT. A continuum emission core elongated from SE to NW (~10"), has been observed at the and further resolved into a double source with the SMA at 1.1 mm, with a separation of ~4". Together with the measurements from the Spitzer and MSX at mid-IR, we determined the SED of W3-SE and fit it with a thermal dust emission model, suggesting the presence of two dust components with different temperatures. The emission at mm/submm wavelengths is dominated by a major cold (~41 K) with a mass of ~65 Msun. In addition, there is a weaker hot component (~400 K) which accounts for emission in the mid-IR, suggesting that a small fraction of dust has been heated by newly formed stars. We also imaged the molecular core in the HCO+(1-0) line using CARMA at an angular resolution ~6". With the CARMA observations, we have verified the presence of a blue-dominated double peak profile toward this core. The line profile cannot be explained by infall alone. The broad velocity wings of the line profile suggest that other kinematics such as outflows within the central 6" of the core likely dominate the resulting spectrum. The kinematics of the sub-structures of this core suggest that the molecular gas outside the main component appears to be dominated by the bipolar outflow originated from the dust core with a dynamical age of >30000 yr. Our analysis, based on the observations at wavelengths from mm/submm to mid-IR suggests that the molecular core W3-SE hosts a group of newly formed young stars and protostars.Comment: 14 pages, 8 figures; accepted by Ap

    CARMA Large Area Star Formation Survey: Project Overview with Analysis of Dense Gas Structure and Kinematics in Barnard 1

    Get PDF
    We present details of the CARMA Large Area Star Formation Survey (CLASSy), while focusing on observations of Barnard 1. CLASSy is a CARMA Key Project that spectrally imaged N2H+, HCO+, and HCN (J=1-0 transitions) across over 800 square arcminutes of the Perseus and Serpens Molecular Clouds. The observations have angular resolution near 7" and spectral resolution near 0.16 km/s. We imaged ~150 square arcminutes of Barnard 1, focusing on the main core, and the B1 Ridge and clumps to its southwest. N2H+ shows the strongest emission, with morphology similar to cool dust in the region, while HCO+ and HCN trace several molecular outflows from a collection of protostars in the main core. We identify a range of kinematic complexity, with N2H+ velocity dispersions ranging from ~0.05-0.50 km/s across the field. Simultaneous continuum mapping at 3 mm reveals six compact object detections, three of which are new detections. A new non-binary dendrogram algorithm is used to analyze dense gas structures in the N2H+ position-position-velocity (PPV) cube. The projected sizes of dendrogram-identified structures range from about 0.01-0.34 pc. Size-linewidth relations using those structures show that non-thermal line-of-sight velocity dispersion varies weakly with projected size, while rms variation in the centroid velocity rises steeply with projected size. Comparing these relations, we propose that all dense gas structures in Barnard 1 have comparable depths into the sky, around 0.1-0.2 pc; this suggests that over-dense, parsec-scale regions within molecular clouds are better described as flattened structures rather than spherical collections of gas. Science-ready PPV cubes for Barnard 1 molecular emission are available for download.Comment: Accepted to The Astrophysical Journal (ApJ), 51 pages, 27 figures (some with reduced resolution in this preprint); Project website is at http://carma.astro.umd.edu/class

    Estudio regional integrado del altiplano Cundiboyacense

    Get PDF

    CARMA Large Area Star Formation Survey: Observational Analysis of Filaments in the Serpens South Molecular Cloud

    Get PDF
    We present the N2H+(J=1-0) map of the Serpens South molecular cloud obtained as part of the CARMA Large Area Star Formation Survey (CLASSy). The observations cover 250 square arcminutes and fully sample structures from 3000 AU to 3 pc with a velocity resolution of 0.16 km/s, and they can be used to constrain the origin and evolution of molecular cloud filaments. The spatial distribution of the N2H+ emission is characterized by long filaments that resemble those observed in the dust continuum emission by Herschel. However, the gas filaments are typically narrower such that, in some cases, two or three quasi-parallel N2H+ filaments comprise a single observed dust continuum filament. The difference between the dust and gas filament widths casts doubt on Herschel ability to resolve the Serpens South filaments. Some molecular filaments show velocity gradients along their major axis, and two are characterized by a steep velocity gradient in the direction perpendicular to the filament axis. The observed velocity gradient along one of these filaments was previously postulated as evidence for mass infall toward the central cluster, but these kind of gradients can be interpreted as projection of large-scale turbulence.Comment: 12 pages, 4 figures, published in ApJL (July 2014
    corecore