3 research outputs found

    Herramientas que ayudan a salvaguardar los bienes en comĂșn de la comunidad de San Pedro Valencia

    Get PDF
    En este PAP se trabajĂł en generar soluciones concretas y brindar informaciĂłn a los pobladores de San Pedro Valencia en materia ambiental, legal y comunicacional que les ayude a tomar decisiones para el bien comĂșn. Esto con el objetivo de asistirlos debido a la notificaciĂłn de que una empresa dedicada al cultivo de tomates habĂ­a realizado una descarga de desechos en la presa

    Predicting critical illness on initial diagnosis of COVID-19 based on easily obtained clinical variables: development and validation of the PRIORITY model

    Get PDF
    Objectives: We aimed to develop and validate a prediction model, based on clinical history and examination findings on initial diagnosis of coronavirus disease 2019 (COVID-19), to identify patients at risk of critical outcomes. Methods: We used data from the SEMI-COVID-19 Registry, a cohort of consecutive patients hospitalized for COVID-19 from 132 centres in Spain (23rd March to 21st May 2020). For the development cohort, tertiary referral hospitals were selected, while the validation cohort included smaller hospitals. The primary outcome was a composite of in-hospital death, mechanical ventilation, or admission to intensive care unit. Clinical signs and symptoms, demographics, and medical history ascertained at presentation were screened using least absolute shrinkage and selection operator, and logistic regression was used to construct the predictive model. Results: There were 10 433 patients, 7850 in the development cohort (primary outcome 25.1%, 1967/7850) and 2583 in the validation cohort (outcome 27.0%, 698/2583). The PRIORITY model included: age, dependency, cardiovascular disease, chronic kidney disease, dyspnoea, tachypnoea, confusion, systolic blood pressure, and SpO2 ≀93% or oxygen requirement. The model showed high discrimination for critical illness in both the development (C-statistic 0.823; 95% confidence interval (CI) 0.813, 0.834) and validation (C-statistic 0.794; 95%CI 0.775, 0.813) cohorts. A freely available web-based calculator was developed based on this model (https://www.evidencio.com/models/show/2344). Conclusions: The PRIORITY model, based on easily obtained clinical information, had good discrimination and generalizability for identifying COVID-19 patients at risk of critical outcomes

    Discovering HIV related information by means of association rules and machine learning

    Get PDF
    Acquired immunodeficiency syndrome (AIDS) is still one of the main health problems worldwide. It is therefore essential to keep making progress in improving the prognosis and quality of life of affected patients. One way to advance along this pathway is to uncover connections between other disorders associated with HIV/AIDS-so that they can be anticipated and possibly mitigated. We propose to achieve this by using Association Rules (ARs). They allow us to represent the dependencies between a number of diseases and other specific diseases. However, classical techniques systematically generate every AR meeting some minimal conditions on data frequency, hence generating a vast amount of uninteresting ARs, which need to be filtered out. The lack of manually annotated ARs has favored unsupervised filtering, even though they produce limited results. In this paper, we propose a semi-supervised system, able to identify relevant ARs among HIV-related diseases with a minimal amount of annotated training data. Our system has been able to extract a good number of relationships between HIV-related diseases that have been previously detected in the literature but are scattered and are often little known. Furthermore, a number of plausible new relationships have shown up which deserve further investigation by qualified medical experts
    corecore