20 research outputs found

    Staphylococcal Cassette Chromosome mec and Panton-Valentine Leukocidin Characterization of Methicillin-Resistant Staphylococcus Aureus Clones

    Get PDF
    Staphylococcal cassette chromosome mec (SCCmec) types and Panton-Valentine leukocidin (PVL) gene carriage were compared among suspected community-associated methicillin-resistant Staphylococcus aureus MRSA (CA-MRSA) and health care-associated MRSA (HA-MRSA) isolates. CA-MRSA isolates carried the SCCmec type IV complex, and most were PVL positive. The HA-MRSA isolates carried the SCCmec type II complex and did not harbor the PVL genes

    Neuronal Stress Pathway Mediating a Histone Methyl/Phospho Switch Is Required for Herpes Simplex Virus Reactivation

    Get PDF
    Herpes simplex virus (HSV) reactivation from latent neuronal infection requires stimulation of lytic gene expression from promoters associated with repressive heterochromatin. Various neuronal stresses trigger reactivation, but how these stimuli activate silenced promoters remains unknown. We show that a neuronal pathway involving activation of c-Jun N-terminal kinase (JNK), common to many stress responses, is essential for initial HSV gene expression during reactivation. This JNK activation in neurons is mediated by dual leucine zipper kinase (DLK) and JNK-interacting protein 3 (JIP3), which direct JNK towards stress responses instead of other cellular functions. Surprisingly, JNK-mediated viral gene induction occurs independently of histone demethylases that remove repressive lysine modifications. Rather, JNK signaling results in a histone methyl/phospho switch on HSV lytic promoters, a mechanism permitting gene expression in the presence of repressive lysine methylation. JNK is present on viral promoters during reactivation, thereby linking a neuronal-specific stress pathway and HSV reactivation from latency

    Identification and Characterization of the Human Herpesviruses 6A and 6B Genome Integration into Telomeres of Human Chromosomes during Latency

    Get PDF
    While the latent genome of most Herpesviruses persists as a nuclear circular episome, previous research has suggested that Human Herpesvirus 6 (HHV-6) may integrate into host cell chromosomes, and be vertically transmitted in the germ-line. Because the HHV-6 genome encodes a perfect TTAGGG telomere repeat array at the right end direct repeat (DRR) and an imperfect TTAGGG repeat at the end of the left end direct repeat (DRL), we established a hypothesis that during latency, the HHV-6A and HHV-6B genome integrates into the telomeres of human chromosomes through homologous recombination with the n(TTAGGG) viral repeats, and the integrated virus can be induced to lytic replication. We sought, first, to definitively illustrate the in vitro and in vivo integration of HHV-6A and HHV-6B. Following infection of naïve Jjhan and HEK-293 cell lines by HHV-6A and Molt3 cell line by HHV-6B, the virus integrated into telomere of chromosomes. Next, peripheral blood mononuclear cells (PBMCs) were isolated from families in which several members, including at least one parent and child, had unusually high copy numbers of HHV-6 DNA per ml of blood. FISH confirmed that HHV-6 DNA co-localized with telomeric regions of one allele on chromosomes 17p13.3, 18q23, and 22q13.3, while the integration site was identical among members of the same family. Partial sequencing of the viral genome identified the same integrated HHV-6A strain within members of families, confirming vertical transmission of the viral genome through the germ-line [inherited HHV-6 (iHHV-6)]. Amplification and sequencing of the HHV-6A and more recently HHV-6B viral-chromosome junction identified DRR integrated into the telomere directly adjacent to the subtelomere of the chromosome. After mapping the DRR of iHHV-6, we subsequently focused on determining if the DRL was present in the integrated genome and whether the remaining telomere sequence of the chromosome was extended beyond the DRL. Southern hybridization of PCR amplified HHV-6 integrated cell lines and iHHV-6 patients PBMCs indicate the presence of DRL within the integrated viral genome. Therefore, the genomic structure of the iHHV-6 is as follows: chromosome-subtelomere-(TTAGGG)5-41-DRR-U-DRL-(TTAGGG)n. During latent integration, no circular episomes were detected even by PCR. However, trichostatin-A treatment of PBMCs and in vitro integrated HEK-293 cells induced the reactivation of iHHV-6 from its latent integrated state. We demonstrated the induction of integrated iHHV-6 with trichostatin-A lead to the excision of the integrated genome and generation of the U-DR-U junction which signifies circularization and/or concatemer formation of the viral genome through rolling-circle replication. Taken together, the data suggests that HHV-6A and HHV-6B are unique among human herpesviruses: they specifically and efficiently integrate into telomeres of chromosomes during latency rather than forming episomes, and the integrated viral genome is capable of producing virions

    Staphylococcal Cassette Chromosome mec and Panton-Valentine Leukocidin Characterization of Methicillin-Resistant Staphylococcus aureus Clones

    Get PDF
    Staphylococcal cassette chromosome mec (SCCmec) types and Panton-Valentine leukocidin (PVL) gene carriage were compared among suspected community-associated methicillin-resistant Staphylococcus aureus MRSA (CA-MRSA) and health care-associated MRSA (HA-MRSA) isolates. CA-MRSA isolates carried the SCCmec type IV complex, and most were PVL positive. The HA-MRSA isolates carried the SCCmec type II complex and did not harbor the PVL genes

    Persistent Human Herpesvirus-6 Infection in Patients with an Inherited Form of the Virus

    No full text
    Human herpesvirus-6 (HHV-6)A and 6B are ubiquitous betaherpesviruses viruses with lymphotropic and neurotropic potential. As reported earlier, these viruses establish latency by integration into the telomeres of host chromosomes. Chromosomally integrated HHV-6 (CIHHV-6) can be transmitted vertically from parent to child. Some CIHHV-6 patients are suffering from neurological symptoms, while others remain asymptomatic. Four patients with CIHHV-6 and CNS dysfunction were treated with valganciclovir or foscarnet. HHV-6 replication was detected by reverse transcriptase polymerase chain reaction amplification of a late envelope glycoprotein. In this study we also compared the inherited and persistent HHV-6 viruses by DNA sequencing. The prevalence of CIHHV-6 in this cohort of adult patients from the USA suffering from a wide range of neurological symptoms including long-term fatigue were found significantly greater than the reported 0.8% in the general population. Long-term antiviral therapy inhibited HHV-6 replication as documented by loss of viral mRNA production. Sequence comparison of the mRNA and the inherited viral genome revealed that the transcript is produced by an exogenous virus. In conclusion, the data presented here document that some individuals with CIHHV-6 are infected persistently with exogenous HHV-6 strains that lead to a wide range of neurological symptoms; the proposed name for this condition is inherited herpesvirus 6 syndrome or IHS. J Med. Virol. 85:1940–1946, 2013. © 2013 Wiley Periodicals, Inc
    corecore