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SUMMARY

Herpes simplex virus (HSV) reactivation from latent neuronal infection requires stimulation of 

lytic gene expression from promoters associated with repressive heterochromatin. Various 

neuronal stresses trigger reactivation, but how these stimuli activate silenced promoters remains 

unknown. We show that a neuronal pathway involving activation of c-Jun N-terminal kinase 

(JNK), common to many stress responses, is essential for initial HSV gene expression during 

reactivation. This JNK activation in neurons is mediated by dual leucine zipper kinase (DLK) and 

JNK-interacting protein 3 (JIP3), which direct JNK towards stress responses instead of other 

cellular functions. Surprisingly, JNK-mediated viral gene induction occurs independently of 

histone demethylases that remove repressive lysine modifications. Rather, JNK signaling results in 

a histone methyl/phospho switch on HSV lytic promoters, a mechanism permitting gene 

expression in the presence of repressive lysine methylation. JNK is present on viral promoters 
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during reactivation, thereby linking a neuronal-specific stress pathway and HSV reactivation from 

latency.

INTRODUCTION

Herpes simplex virus (HSV) persists for the life-time of the host in the form of a latent 

infection in peripheral neurons (Knipe and Cliffe, 2008; Roizman et al., 2013). Periodically, 

HSV must re-enter the lytic phase of replication in order to produce progeny virus for 

dissemination, a process known as reactivation. However, during latent infection, the viral 

lytic genes are extensively down-regulated and their promoters assembled into repressive 

heterochromatin (Cliffe et al., 2009; Kwiatkowski et al., 2009; Wang et al., 2005). 

Therefore, reactivation requires viral lytic gene expression to be induced from silenced 

promoters in the absence of viral proteins.

The earliest events in HSV reactivation are poorly understood but recent work suggests that 

while similarities exist, there are several differences in the mechanisms of HSV gene 

expression during reactivation versus de novo lytic infection (Roizman et al., 2013). During 

lytic replication, over 70 viral gene products are expressed in a cascade dependent fashion. 

Recruitment of the cellular transcriptional machinery is dependent on both cellular and viral 

(HSV immediate-early activator, VP16) transcriptional transactivators to promote 

expression of the immediate-early (IE) mRNAs. Viral early (E) gene expression occurs 

following the synthesis of the IE proteins and finally late (L) gene expression is dependent 

upon viral DNA replication (Roizman et al., 2013). In contrast, during the early stages of 

reactivation the initial wave of lytic gene expression is not necessarily dependent upon VP16 

expression (Kim et al., 2012). In addition, E and L gene expression can occur in the absence 

of viral protein synthesis (Du et al., 2011; Kim et al., 2012; Thompson et al., 2009) and L 

gene expression is not dependent on viral DNA replication (Kim et al., 2012). This initial 

phase of viral gene expression appears to represent an event that is distinct from full 

reactivation (i.e. the production of infectious virus), and has been termed Phase I or 

animation (Kim et al., 2012; Penkert and Kalejta, 2011). During Phase I, the observation that 

all three classes of viral genes are induced in the absence of viral protein synthesis suggests 

that host cell proteins initiate this process.

Although cellular proteins, including histone demethylases, have been found to be required 

for HSV reactivation (Hill et al., 2014; Liang et al., 2012; 2013; 2009; Messer et al., 2015), 

as yet no direct link has been identified between a reactivation stimulus and the earliest 

induction of lytic gene expression. Reactivation of HSV can be trigged by different forms of 

neuronal stress including nerve growth factor (NGF)-deprivation through inhibition of 

Phosphoinositide 3-kinase (PI3K) signaling (Camarena et al., 2010; Du et al., 2011; Wilcox 

and Johnson, 1987), axotomy (Carton and Kilbourne, 1952) and heat shock (Miller et al., 

2009; Sawtell and Thompson, 1992). These stimuli also induce activation of the c-Jun N-

terminal kinase (JNK) signaling pathway (Dorion and Landry, 2002; Estus et al., 1994; 

Kenney and Kocsis, 1998; Maroney et al., 1999; Tsui-Pierchala et al., 2000). We therefore 

hypothesized that activation of JNK is a key event in HSV reactivation.
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JNKs are members of the MAP kinase family that in mice are encoded by three different 

genes, Jnk1, Jnk2 and Jnk3. In the majority of cells types, JNKs are activated in response to 

cellular stress and cytokines. Neurons however have high levels of constitutive JNK activity 

that is required to regulate neuronal growth and homeostasis (Bjorkblom, 2005; Chang et al., 

2003). The interaction of JNKs with different accessory proteins regulates whether they 

perform physiological or stress-inducible functions. For example, following a neuronal 

stress stimuli including NGF-deprivation or axotomy, the mixed lineage kinase protein dual 

leucine kinase (DLK) along with the JNK scaffold protein, JNK-interacting protein-3 

(JIP-3), redirect JNK to induce a stress response, characterized by phosphorylation of c-Jun 

(Miller et al., 2009; Sengupta Ghosh et al., 2011; Welsbie et al., 2013). Activation of JNK 

by DLK/JIP-3 can result in cell death, axon degeneration or regeneration depending on the 

nature of the signal and maturation state of the neurons (Tedeschi and Bradke, 2013).

To investigate the role of JNK in HSV reactivation, we developed a model of latency in 

primary mouse sympathetic neurons similar to that described previously using neurons 

isolated from rats (Camarena et al., 2010; Wilcox and Johnson, 1987). Primary neuronal 

models are ideal for defining the cellular signaling pathways involved as robust reactivation 

can be induced in pure populations of intact neurons. Using this model, we show that JNK 

activity is critical for reactivation of HSV. Specifically, we found that the neuronal stress 

pathway of JNK activation, which is dependent upon DLK and JIP-3, is required to trigger 

the earliest detectable induction of lytic gene expression during Phase I of reactivation.

Because JNK-dependent Phase I of reactivation requires the up-regulation of gene 

expression from promoters associated with repressive histone modifications, we investigated 

whether histone demethylase activity was required. We found that neither LSD1 (H3K9-

demethylase) nor UTX/JMJD3 (H3K27-demethylases) activities were necessary for Phase I 

gene expression. Therefore, reversal of these repressive modifications was not required in 

this initial wave of gene expression. While the presence of H3K27me3 or H3K9me3 is 

typically associated with gene silencing, it is becoming increasingly appreciated that 

additional histone modifications, such as phosphorylation, can modulate this silencing 

function (Gehani et al., 2010; Karch et al., 2013; Rothbart and Strahl, 2014). Indeed, we 

detected a JNK-dependent increase in phosphorylation on histone H3 that still maintained 

the K9me3 modification on nucleosomes associated viral lytic gene promoters. JNK itself 

was also enriched on lytic promoters during Phase I. We therefore provide a direct link 

between activation of a neuronal stress response that would permit an increase in viral lytic 

gene expression from an epigenetically repressed state during Phase I of HSV reactivation.

RESULTS

JNK activity is required for HSV reactivation

To investigate the role of the JNK in HSV reactivation, we utilized primary neurons isolated 

from the superior cervical ganglia (SCG) of postnatal mice to develop a system that would 

allow us to easily manipulate cellular signaling pathways in pure populations of neurons. 

Neurons were pre-treated with type I and type II interferons and infected at an MOI of 2 

plaque forming units (PFU)/cell with HSV-1 strain KOS expressing GFP-tagged version of 

the immediate-early activator protein (VP16) (Ottosen et al., 2006) in the presence of 
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acyclovir (Fig. 1A). After 6 days the acyclovir was removed. At this point there was an 

absence of GFP expression (Fig. 1B) and increased expression of the latency associated 

transcript (LAT) compared to the lytic ICP8 mRNA (Fig. S1A). Reactivation was triggered 

by PI3K inhibition using LY294002, as previously described (Camarena et al., 2010; Kim et 

al., 2012; Kobayashi et al., 2012) (Fig. 1B). Reactivation was quantified based on the 

number of VP16-GFP expressing neurons in the presence of WAY-150138 (van Zeijl et al., 

2000) which blocks packaging of the progeny genomes and therefore cell-to-cell virus 

spread (Fig. 1B and 1C). WAY-150138 was effective in inhibiting the HSV-1 KOS 

replication in neurons (Fig. S1B), confirming that we were quantifying reactivation and not 

viral spread.

PI3K inhibition resulted in the activation of JNK signaling, which is known to result in the 

up-regulation and phosphorylation of the JNK target protein, c-Jun (Eilers et al., 1998). JNK 

activation could be blocked by addition of the established JNK inhibitors SP600125 and 

AS601245 (Fig. 1D). We found that inhibition of JNK signaling by either SP600125 or 

AS601245 completely blocked HSV reactivation triggered by PI3K inhibition as shown by 

the suppression of GFP positive neurons at 72h post-reactivation (Fig. 1E and F). JNK-

inhibition also prevented the expression of the immediate-early protein, ICP4 (Fig. S1C and 

S1D). In addition to PI3K inhibition, reactivation has previously been found to be triggered 

by dexamethasone (Cook et al., 1991; Du et al., 2012) or AKT inhibition (Camarena et al., 

2010). We found that inhibition of JNK activity by SP600125 also prevented reactivation in 

the presence of dexamethasone (Fig. S1E) or AKT VIII inhibitor (Fig. S1F). Latent cultures 

of primary neurons isolated from the dorsal root ganglia (DRG) of mice were also 

established by infection with GFP-VP16 HSV in the presence of ACV (Fig. 1G). 

Reactivation of HSV from DRG neurons could be triggered by PI3K inhibition, which we 

also found to be inhibited by addition of the JNK inhibitor, SP600125 (Fig. 1G).

We next investigated the effect of JNK-inhibition on reactivation of HSV from neurons that 

were infected in vivo. Latency was established in mice following corneal infection and 

reactivation was triggered explant/axotomy of the trigeminal ganglia (Liang et al., 2009). 

Axotomy of the trigeminal ganglia resulted in JNK activation, as determined by c-Jun 

phosphorylation, by 4h post-explant (Fig. S2). c-Jun phosphorylation could be reduced by 

addition of SP600125, although the level of inhibition was variable, likely due to incomplete 

penetrance of the JNK inhibitor into the explanted ganglia (Fig. S2). Following explant/

axotomy induced reactivation, addition of SP600125 reduced ICP27 mRNA expression at 6 

hours post-explant (Fig. 2A). Additionally, SP600125 also inhibited viral DNA replication 

(Fig. 2B) and the production of infectious virus at 48h post-explant (Fig. 2C). Thus, 

activation of JNK was found to be essential for reactivation from both sympathetic and 

sensory neurons, triggered by multiple stimuli in both in vitro and in vivo models of HSV 

latency.

Neuronal apoptosis is dispensable for HSV reactivation

Immature post-natal day 5 neurons are known to undergo apoptosis in response to NGF-

deprivation and PI3K inhibition (Kristiansen and Ham, 2014; Orike et al., 2001). This 

apoptosis is dependent upon activation of JNK signaling (Besirli and Johnson, 2003; Eilers 
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et al., 1998). Neurons will also undergo apoptosis in response to dexamethasone (Du et al., 

2012). Therefore HSV reactivation could be either directly triggered by JNK signaling or a 

consequence of neuronal cell death. However, previous studies have demonstrated that 

immature neurons develop resistance to apoptosis as they mature both in vitro and in vivo 

(Kole et al., 2013). Consistent with this observation, neither PI3K inhibition nor 

dexamethasone resulted in neuronal cell death in these postnatal-day 18 (the same age of 

neurons at the time of reactivation) mature neurons (Fig. 3A). To definitively rule out a 

potential role for apoptosis in this reactivation assay, we utilized neurons that are deficient in 

the pro-apoptotic protein, Bax. Since SCG neurons do not expression Bak, deletion of Bax is 

sufficient to completely inhibit apoptosis in these neurons (Kristiansen and Ham, 2014). 

HSV reactivation was found to be equivalent in Bax knock-out and wild-type neurons (Fig. 

3B). These results indicate that the neuronal stress pathway of JNK signaling, and not cell 

death, was critical for triggering HSV reactivation.

JNK-activation by DLK/JIP-3 is required for HSV Phase I of reactivation

We next examined whether activation of the JNK cell stress pathway was directly required 

to induce the transcription of the initial wave of viral lytic mRNAs during Phase I. In our 

system, the representative lytic mRNAs ICP27 and ICP8 were induced between 15-20h 

post-reactivation (Figs. 4A and S3A). Strikingly, inhibition of JNK by SP600125 blocked 

both ICP27 and ICP8 mRNAs induction at 18h post-reactivation (Figs. 4B and S3B). In 

contrast, inhibition of JNK had no effect on ICP27 gene expression following de novo lytic 

infection of neurons (Fig. S3C). Therefore, JNK activation is required for Phase I gene 

expression during reactivation but not IE gene expression during lytic replication in neurons.

In neurons, stress signaling including both local and axon-specific NGF-deprivation and 

axotomy activates JNK via DLK and JIP3 (Miller et al., 2009; Sengupta Ghosh et al., 2011; 

Welsbie et al., 2013). To determine whether DLK and JIP-3 were required for HSV 

reactivation we depleted either DLK or JIP3 protein using lentivirus-mediated delivery of 

shRNAs. We found that depletion of either protein blocked the induction of ICP27 gene 

expression at 18h post-reactivation (Fig. 4C-E). Hence, activation of the neuronal specific 

pathway of JNK by DLK/JIP-3 was required for the induction of viral lytic gene expression 

during Phase I of reactivation. Depletion of DLK or JIP3 did not reduce ICP27 mRNA 

levels following de novo infection (Fig. S3D-F), indicating that distinct mechanisms regulate 

lytic gene expression during Phase I of reactivation versus lytic replication.

Phase I of reactivation is independent of histone demethylase activity

During latent infection HSV promoters are associated with histone H3 trimethylated at 

lysine 27 (H3K27me3) and histone H3 di- and tri- methylated at lysine 9 (H3K9me2/3) 

(Cliffe et al., 2009; Kwiatkowski et al., 2009; Wang et al., 2005). Therefore, we investigated 

whether removal of these repressive histone modifications was required for the induction of 

lytic gene expression during Phase I. We first confirmed that the representative viral lytic 

gene promoters (ICP27 and ICP8) were assembled into heterochromatin in the primary 

neuronal model by chromatin immunoprecipitation (ChIP) assays. Both the ICP27 and ICP8 

promoters were found to be associated with H3K27me3 (Figs. 5A and 5B) and H3K9me3 

(Figs. 6A and 6B) in latently infected primary neurons.
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GSK-J4 is a compound that blocks both of the histone lysine 27 demethylases: UTX and 

JMJD3 (Kruidenier et al., 2012) and has been shown to inhibit HSV reactivation (Messer et 

al., 2015). Addition of GSK-J4 blocked HSV reactivation as determined by the detection of 

GFP positive neurons (Fig. 5C). However, GSK-J4 did not inhibit the induction of ICP27 or 

ICP8 mRNA during Phase I (Fig. 5D and 5E). In contrast, we found GSK-J4 reduced ICP27 

expression by approximately 70% during lytic infection in neurons (Fig. 5F), consistent with 

the requirement for UTX for maximal IE gene expression during lytic infection (Oh et al., 

2013). These results highlight the observation that while H3K27me3 demethylase activity is 

required for gene expression during lytic replication, it does not appear to be required for the 

Phase I of reactivation.

During HSV reactivation, the histone demethylases (HDMs) LSD1 and JMJD2 are required 

for the removal of H3K9 methylation (Liang et al., 2009; 2013). Inhibition of LSD1 activity 

using monoamine oxidase inhibitors (MAOIs) such as tranylcypromine (TCP) (Lee et al., 

2006; Metzger et al., 2005) blocks reactivation in the mouse explant model system (Liang et 

al., 2009) and prevents recurrence in vivo (Hill et al., 2014). As shown in Fig. 6A and B, 

histone H3K9me3 was associated with lytic gene promoters in latently infected neurons. In a 

manner comparable to treatment with GSK-J4, addition of TCP inhibited HSV reactivation 

(Fig. 6C) but did not prevent ICP27 or ICP8 mRNA induction during Phase I (Fig. 6D and 

6E). TCP reduced ICP27 expression by over 70% during lytic infection of neurons (Fig. 6F), 

once again highlighting the difference between lytic replication and Phase I of reactivation. 

Taken together, these results show that the first phase of gene expression during HSV 

reactivation is dependent on the JNK cell stress pathway but independent of H3K27 and 

H3K9 histone demethylase activity.

JNK-signaling triggers a methyl/phospho switch on lytic promoters

We next examined how JNK signaling could permit increased viral gene expression during 

Phase I without the removal of the repressive heterochromatin modifications. One 

mechanism by which cellular gene expression can be initiated even in the presence of 

repressive lysine methylation is through histone phosphorylation on a neighboring serine 

(i.e. H3S10 and H3S28). This is known as a histone methyl/phospho switch and has been 

demonstrated to occur following the activation of kinase signaling pathways (Fischle et al., 

2005; 2003; Gehani et al., 2010; Hirota et al., 2005). To investigate the potential of such a 

mechanism in HSV reactivation, we first tested the specificities of several commercially 

antibodies raised against H3K9me3, H3K27me3 and the neighboring phosphorylation marks 

using a histone peptide microarray platform (Fuchs et al., 2011; Rothbart et al., 2012) (Fig. 

S4A-F). Generating these antibody specificity profiles was especially important since 

binding of an antibody to a single histone modification can be occluded by a combination of 

modifications (Fuchs et al., 2011). We identified an antibody that was specific for the dually 

modified histone H3K9me3/pS10 but not for either of the single S10 or K9 modifications 

(Fig. S4C). Using this antibody, we detected a robust increase in the enrichment of 

H3K9me3/pS10 on the ICP27 and ICP8 viral lytic gene promoters, during Phase I of 

reactivation (Fig. 7A and 7B). In contrast, we did not detect an increase in H3K9me3/pS10 

enrichment at the latency-associated transcript (LAT) 5′ exon, which is depleted of 

H3K9me3 during latency (Cliffe et al., 2009) (Fig. 7C). Importantly, the increase in 
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H3K9me3/pS10 seen on viral lytic promoters was blocked when JNK activity was inhibited 

(Fig. 7A and 7B), indicating that JNK signaling resulted in phosphorylation of histone H3 at 

S10 while still maintaining H3K9 methylation.

The kinases that have been demonstrated to phosphorylate histone H3S10 in the context of 

lysine methylation include mitogen and stress activated kinases (MSKs) (Gehani et al., 

2010; Sabbattini et al., 2014) and Aurora B kinase (Fischle et al., 2005; Hirota et al., 2005; 

Sabbattini et al., 2014). However, we found no role for these kinases in reactivation (Fig. 7D 

and 7E). Recently, JNK itself was shown to have the ability to of phosphorylate H3S10 in 

vitro (Tiwari et al., 2011). To examine the possibility that JNK directly phosphorylates 

histone H3 during HSV reactivation, we examined JNK occupancy on lytic promoters 

during reactivation. Our results show that JNK was enriched on viral lytic promoters, but not 

on the control LAT 5′ exon, during reactivation (Fig. 7F). Taken together, these data suggest 

that JNK occupancy of viral promoters mediates the histone methyl/phospho switch that 

would permit viral gene expression from repressed heterochromatin during HSV 

reactivation.

DISCUSSION

It has been long hypothesized that neuronal cell stress results in reactivation of HSV, yet the 

stress-signaling pathways mediating reactivation have remained undiscovered. Using a 

primary neuronal model of HSV latency and reactivation, we found that the DLK/JIP-3 JNK 

stress pathway is a key mediator of HSV reactivation in neurons and triggers the earliest 

detectable up-regulation in lytic gene expression. Importantly, we found that activation of 

the JNK pathway resulted in phosphorylation of histone H3 associated with HSV lytic 

promoters, which could allow viral lytic gene expression to occur without removal of 

repressive lysine modifications.

The pathway of JNK activation by DLK and JIP3 has been described for various types of 

neuronal insults that occur on either the whole neuron and localized only to the axon, 

including local or global NGF-deprivation and axotomy (Miller et al., 2009; Sengupta 

Ghosh et al., 2011; Welsbie et al., 2013). We hypothesize that activation of the DLK/JIP3 

JNK pathway is a major trigger of HSV reactivation in response to various stimuli in vivo. 

Recent work has suggested that latency may be significantly dynamic with low levels of 

lytic gene expression in individual neurons and/or infrequent abortive reactivation events 

(Ma et al., 2014; Margolis et al., 2007). Increased viral gene expression in this context was 

associated with changes in cellular gene expression, including up-regulation of Bim mRNA 

(Ma et al., 2014), which is a key target of the DLK/JIP3 JNK pathway (Harris and Johnson, 

2001). We propose that this low level of lytic gene expression could result from limited 

activation of the neuronal specific JNK cell stress pathway, perhaps following small insults 

to neurons. Viral reactivation could be completed when these signaling pathways reach full 

threshold. As DLK and JIP3 are expressed almost exclusively in neurons (Hirai et al., 2005; 

Kelkar et al., 2000), targeting them would be an effective mechanism to prevent HSV 

reactivation in response to multiple triggers.
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We have further defined Phase I of reactivation as being dependent upon JNK signaling but 

independent of histone demethylase activity. Previous work has also found that Phase I 

occurs independently of viral protein synthesis (Du et al., 2011; Kim et al., 2012) and 

expression of the lytic transactivator VP16 (Kim et al., 2012). Although Phase I occurred 

even in the absence of histone demethylase activity, we found that lytic gene expression 

following de novo infection in neurons was dependent upon histone demethylase activity, 

supporting previous observations in non-neuronal cells (Liang et al., 2012; 2009; 2013; Oh 

et al., 2013). Therefore, the mechanisms of lytic gene expression during Phase I and de novo 

infection are distinct. Perhaps this is not surprising given that gene expression needs to be 

induced from promoters with different chromatin structures in reactivation versus de novo 

infection (Deshmane and Fraser, 1989; Kent et al., 2004; Lentine and Bachenheimer, 1990; 

Wang et al., 2005). Additionally, in contrast to de novo infection, gene expression during 

reactivation needs to be induced in the absence of viral transcriptional activators that can 

promote the recruitment of coactivator complexes containing chromatin remodeling proteins 

and histone demethylases.

Our results also support previous observations that full reactivation requires the activity of 

histone demethylases, most likely once a threshold for lytic gene expression is reached. 

Therefore, targeting histone demethylase activity along with the JNK pathway would be an 

effective, multi-step approach to prevent HSV reactivation. Previous work identifying a role 

for the histone demethylases LSD1 and JMJD2s in explant/axotomy induced reactivation 

found that they were required for lytic gene expression at 6h post-reactivation (Liang et al., 

2009; 2013). Explant is known to induce rapid changes in cellular and viral lytic gene 

expression (Rishal and Fainzilber, 2013; Sawtell and Thompson, 2004); therefore it is 

possible that histone phosphorylation and demethylation are more tightly coupled following 

explant induced reactivation compared to reactivation in intact neurons. The viral lytic 

transactivator VP16 is required for full reactivation following thermal stress in vivo 

(Thompson et al., 2009) and PI3K inhibition in primary neurons (Kim et al., 2012) but not 

following explant induced reactivation (Sears et al., 1991; Steiner et al., 1990). Therefore an 

alternative hypothesis is that there are differences in the pathways to reactivation in 

axotomized ganglia versus intact neurons. Irrespective, in this study JNK activity was found 

to be required for the earliest stages of reactivation in both explanted and intact neurons.

Our results identify a direct link between activation of the DLK/JIP-3 JNK neuronal stress 

pathway and histone methyl/phospho switch that could allow gene expression to occur even 

without the removal of repressive lysine modifications (Fig. 4G). A histone methyl/phospho 

switch is thought to result in the eviction of histone readers that bind the methylated histones 

but are unable to do so when the neighboring serine residue is phosphorylated (Fischle et al., 

2003; 2005; Gehani et al., 2010; Hirota et al., 2005; Sabbattini et al., 2014). Specifically, we 

detected enrichment in the H3K9me3/pS10 modification during the Phase I phase of 

reactivation that was dependent upon JNK activity. A histone methyl/phospho switch 

occurring at S10 has been found to result in the loss of HP1 binding to H3K9me3 during 

mitosis and loss of Polycomb group protein EZH1 binding to developmentally regulated 

genes in embryonic stem cells (Fischle et al., 2005; Hirota et al., 2005; Sabbattini et al., 

2014). Histone phosphorylation can result in either transcriptional silencing or activation 
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depending upon the context (Sawicka and Seiser, 2014). Our results suggest that a JNK-

mediated H3K9me3/pS10 switch in neurons results in HSV transcriptional activation during 

Phase I of reactivation.

Thus far, the kinases found to be responsible for an H3K9me3/pS10 switch are the MSKs 

and Aurora B kinase (Fischle et al., 2005; Hirota et al., 2005; Sabbattini et al., 2014). As we 

found no role for these kinases in HSV reactivation we conclude that they likely do not play 

a major role in mediating the methyl/phospho switch during Phase I. Furthermore, JNK 

mediates histone S10 phosphorylation during neuronal development, which is associated 

with transcriptional activation (Tiwari et al., 2011). However, in this context 

phosphorylation was not found to occur in the presence of H3K9-methylation. Our results 

now link JNK activity with an H3K9me3/pS10 switch.

In the context of HSV reactivation, maintaining the repressive histone-lysine modifications 

through the use of a methyl/phospho switch may allow the viral genome to become easily 

re-repressed if the threshold for full reactivation is not reached. Previous work from Kim et 

al (2012) has suggested only a sub-population of neurons that undergo Phase I progress to 

full reactivation, indicating that this step is indeed reversible. Importantly, by highjacking a 

neuronal signaling pathway, HSV has evolved a mechanism that allows the earliest gene 

expression to occur from repressed chromatin in the absence of viral-encoded activators. 

While our results show that this histone methyl/phospho switch allows for HSV reactivation, 

a similar mechanism may also permit cellular gene expression from repressed chromatin in 

other situations of neuronal stress.

EXPERIMENTAL PROCEDURES

Primary neuronal cultures

Sympathetic neurons were dissected from the superior cervical ganglia of post-natal day 1-3 

(P1-3) CD1 mice (Charles River Laboratories) or Bax knock-out/WT litter mate controls 

(Knudson et al., 1995) as previously (Deshmukh et al., 2002). Sensory neurons were isolated 

from the dorsal root ganglia (DRG) of P0-1 CD-1 mice. Briefly, ganglia were placed in 

Leibovitz's L-15 before incubation in collagenase (1 mg/ml) followed by trypsin (2.5 

mg/ml) for 20 min each at 37°C. and plated onto rat tail collagen. Sympathetic neurons were 

maintained in AM50 media (MEM with the addition of 50 ng/ml 2.5S NGF, 10% fetal calf 

serum, 2 mM glutamine, 100 μg/ml penicillin, 100 μg/ml streptomycin, 20 μM 

fluorodeoxyuridine and 20 μM uridine). Aphidicolin (3.3μg/ml) was also added to the media 

for 3 days post plating to remove any proliferating cells. Sensory neurons were maintained 

in DRG media (NeuroCult Neurobasal media (Stem Cell Technologies), SM1 (Stem Cell 

Technologies), 4.5g/L glucose, 50ng/ml 2.5S NGF, 10ng/ml glial derived neurotropic factor, 

2mM glutamine, 100 μg/ml penicillin, 100 μg/ml streptomycin, 20 μM fluorodeoxyuridine 

and 20 μM uridine). Aphidicolin (3.3μg/ml) was also added to the media for 2 days post 

plating, followed by cytosine arabinoside (3μM) for 2 days to remove proliferating cells.
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Establishment and reactivation of latent HSV-1 infection in primary neurons

To establish HSV-latently infected cultures in neurons isolated from SCGs, P9 neurons were 

pre-treated with 100u/ml mouse IFN-alpha (Millipore) and 250u/ml mouse IFN-gamma 

(Millipore) in AM50 without fluorodeoxyuridine and uridine (AM50-FUDR). After 24 

hours, the cultures were infected with HSV-DG1 (KOS recombinant HSV expressing a 

VP16-GFP fusion protein) (Ottosen et al., 2006). Neurons were infected at a multiplicity of 

infection (MOI) of 2 PFU/cell (assuming 104 neurons/well/24 well plate or at 104 PFU/ml) 

in PBS containing 1% FBS, 4.5g/L glucose and 100μM acyclovir (ACV) for 2 hrs. Post 

infection, the media was changed to AM50-FUDR containing 100μM (ACV) for 6 days, and 

then AM50-FUDR. For the establishment of latently infected cultures of neurons isolated 

from DRGs, P5 neurons were infected at an MOI of 1 PFU/cell and maintained in DRG 

media without FUDR containing 100μM (ACV) for 4 days to allow for the establishment of 

latent infection, and then DRG media without FUDR. WAY-150138 (10 μg/ml) was added 

to limit cell-to-cell spread. Reactivation was quantified by counting the numbers of GFP-

positive neurons. Analyses of the distributions were carried out by KS normality tests and 

statistical comparisons were made using two-tailed paired students T-test (Prism V5.0c)

Mouse infections and explant-induced ex vivo reactivation

Establishment and reactivation of HSV in murine trigeminal ganglia was carried out as 

described previous (Liang et al., 2012). Mice were infected by corneal scarification with 

2×105 PFU/eye HSV-1 strain F. At 30-45 days post-infection, latently infected trigeminal 

ganglia were bisected and each half was explanted into media containing vehicle (DMSO) or 

SP600125 (10μM) for 48 hrs. The resulting viral yields were determined by titers of the 

ganglia homogenates on Vero cell monolayers. DNA was prepared from aliquots of the 

paired ganglia using ZR Genomic DNA-Tissue Miniprep Kit (Zymo) and HSV DNA levels 

were determined by qPCR using FastStart Universal SYBR Green Master Mix (Roche) in an 

Eppendorf Realplex4. HSV (UL30) and control GAPDH primer sets are as described (Hill et 

al., 2014). All animal care and handling were done in accordance with the NIH Animal Care 

and Use Guidelines and as approved by the NIAID Animal Care and Use Committee. 

Statistical comparisons were made using two-tailed Wilcoxon signed-rank test (Prism 

V5.0c).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Inhibiting JNK activation prevents HSV reactivation in primary neurons. (A.) Schematic of 

the primary superior sympathetic ganglia (SCG) derived neuronal system used to investigate 

HSV reactivation. (B.) The numbers of VP16-GFP expressing cells are shown following the 

establishment of latency in primary neurons isolated from the SCG and after the addition of 

the PI3K inhibitor LY294002 (20μM). Data represent the means +/− SEM, n=18. (C.) 
Immunofluorescence of VP16-GFP and β3-tubulin in the presence of LY294002 and 

WAY-150138. Bar = 50μm (D.) Western blots showing total c-Jun protein levels and 

phosphorylated c-Jun following treatments of primary SCG neurons with either LY294002 

alone or in combination with AS601245 (20μM) or SP600125 (20μM). (E.) Reactivation of 

HSV from primary neurons isolated from the SCG triggered by LY294002 is blocked by 

SP600125 as determined by the numbers of VP16-GFP expressing cells 72h post-

reactivation (mean +/− SEM, n=8). (F.) Reactivation from primary neurons isolated from 

the SCG triggered by LY294002 is blocked by AS601245 as determined by the numbers of 

VP16-GFP expressing cells 72h post-reactivation (mean +/− SEM, n=9). (G.) Reactivation 

of HSV from primary neurons isolated from the dorsal root ganglia (DRG) triggered by 

LY294002 is blocked by SP600125 as determined by the numbers of VP16-GFP expressing 

cells 72h post-reactivation (mean +/− SEM, >=9). SP600125 and AS601245 were both 

added at the time of reactivation. All reactivation experiment were carried out in the 

presence of WAY-150138 (10μg/ml) to block cell-to-cell spread. See also figure S1.
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Figure 2. 
Inhibiting JNK activity suppresses HSV reactivation in an ex vivo explant model (A.) 
ICP27mRNA expression 6h after explant induced reactivation from the TG in the presence 

of acyclovir (ACV) or SP600125 (10μM) (mean +/− SEM, n=6) (B.) The relative viral DNA 

copy number 48h post-explant in the presence and absence of SP600125. (C.) Total plaque-

forming units (PFU) 48h after explant induced reactivation in the presence and absence of 

SP600125 (10μM). Data for B and C represents the mean +/− SEM, n=14. See also figure 

S2.
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Figure 3. 
Neuronal apoptosis is not required for HSV reactivation. (A.) Neuronal survival at 72h post-

treatment with LY294002 (20μM) or dexamethasone (50μM). (B.) Reactivation triggered by 

LY294002 in wild-type or Bax knock-out neurons as determined by VP16-GFP expression 

at 72h in the presence of WAY-150138. Data are means +/− SEM n=3.
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Figure 4. 
Activation of the DLK/JIP3-JNK pathway is required for Phase I gene expression during 

HSV reactivation. (A.) ICP27 mRNA levels at different time points following reactivation 

stimulated by LY294002 as determined by RT-qPCR. The relative copy number of ICP27 

mRNA was normalized to the relative GAPDH copy number in the same sample. The two 

previously characterized phases of HSV reactivation are highlighted (Means +/− SEM, n=3). 

Reactivation was carried out in the presence of WAY-150138. (B.) ICP27 mRNA levels at 

18h post-reactivation in the presence and absence of SP600125. (C-E.) ICP27 mRNA levels 

at 18h post-reactivation following lentivirus shRNA-mediated depletion of DLK or JIP3, or 

infection with the control lentivirus (pLKO.1). Western blots of DLK and JIP3 protein levels 

with the relative levels of DLK and JIP3 normalized to β-actin (below). B-E represent the 

mean +/− SEM n>=5. See also figure S3.
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Figure 5. 
Inhibition of H3K27me3 histone demethylase activity prevents reactivation but not Phase I 

gene expression. (A-B) ChIP assay for H3K27me3 association with ICP27 (A) and ICP8 

(B) promoter during latency shown as the percentage of input. (C.) Effect of GSK-J4 (2μM) 

on HSV reactivation as determined by VP16-GFP expression at 72h in the presence of 

WAY-150138. (D-E.) ICP27 (D) and ICP8 (E) mRNA levels at 18h post-reactivation in the 

presence and absence of GSK-J4. (F.) ICP27 mRNA levels at 8h post-infection with HSV at 

an MOI of 10PFU/cell. Neurons were treated with GSK-J4 at the time of infection. Data are 

means +/− SEM, n>=4.
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Figure 6. 
Inhibition of H3K9me2 histone demethylase activity prevent reactivation but not phase I 

gene expression (A-B.) ChIP assay for H3K9me3 association with ICP27 (A.) and ICP8 (B.) 
promoter during latency. (C.) Effect of TCP (1mM) on HSV reactivation as determined by 

VP16-GFP expression at 72h in the presence of WAY-150138. ICP27 (D.) and ICP8 (E.) 
mRNA levels at 18h post-reactivation in the presence and absence of TCP. (F.) ICP27 

mRNA levels at 8h post-infection with HSV at an MOI of 10PFU/cell. Neurons were treated 

with TCP at the time of infection. Data are means +/− SEM, n>=4.
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Figure 7. 
JNK mediates a histone methyl/phospho switch during reactivation. (A-C.) ChIP using 

antibodies against H3K9me3/pS10 18h following LY294002-mediated reactivation in the 

presence and absence of SP600125. The relative amount of viral ICP27 promoter (A.), ICP8 

promoter (B.) or LAT 5′ exon (C.) DNA immunoprecipitated with the indicated antibody is 

shown as a percentage of input after subtraction of background (control IgG). Data represent 

the mean +/− SEM, n=5. (D.) Reactivation in the presence of the MSK inhibitors H89 (5μM) 

or SB747651A (2μM) determined by the numbers of VP16-GFP expressing neurons at 72h 

post-reactivation. (E.) Reactivation in the presence of the Aurora B kinase inhibitor ZM 

447439 (2 μM). Both (D) and (E) n=6. Reactivation was carried out in the presence of 

WAY-150138 to block cell-to-cell spread of HSV. (F.) ChIP assay for JNK recruitment at 

18h post-reactivation. To determine positive enrichment, the amount of viral DNA 

immunoprecipitated with a JNK-specific antibody was normalized to the amount 

precipitated with a non-specific control antibody. Data represent the mean +/− SEM, n=5. 
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(G.) Model depicting histone modifications on HSV lytic promoters during latency and 

following neuronal cell stress stimuli triggering DLK/JIP-3 mediated activation of JNK and 

the contribution of histone demethylase activity. We hypothesize that a histone methyl/

phospho switch also occurs at H3K27me3/pS28. Euchromatin associated marks enriched on 

lytic promoters during reactivation (e.g. acH3K9/14 (Neumann et al., 2007)) are also 

represented in phase II, although whether histone acetylation is required for Phase I or Phase 

II has not been fully established in a neuronal stress model. See also figure S4.
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