233 research outputs found

    Patrones geométricos para iniciar en el álgebra a estudiantes de primaria con talento matemático

    Get PDF
    Entre las formas de iniciar la enseñanza del álgebra básica, la resolución de problemas de patrones geométricos (ppg) ha mostrado ser muy productiva, incluso en primaria (cai, knuth, 2011). En Benedicto, Jaime, Gutiérrez (2015) hemos realizado otro análisis de la resolución de este tipo de problemas. Diversos autores han descrito estilos de razonamiento y de resolución de problemas característicos de los estudiantes con talento matemático (freiman, 2006), algunos de los cuales son propios del contexto de pre-álgebra y resolución de ppg (Amit, Neira, 2008)

    Brain Ultrasound as a Diagnostic and Follow up Method of Lateral Ventricle Dilatation in Hospitalised Children at the Neurology Department – Pediatric Clinic

    Get PDF
    A child’s full development is tied closely to the full development of the human’s central nervous system, which is why there are so many cases reported with central nervous system illnesses in children. Being very familiar with a child’s normal development, a Pediatric Neurologist doctor is capable of noticing any sort of neurological deviation during the first month of child’s development which can be backed up with diagnostic methods such as: Transfontanellare Ultrasonography which is the chosen method to diagnose such anomalies and also helps keep track of them.Key words: Brain ultrasonography, ventriculomegaly, our clinical experience

    Strongly hyperbolic second order Einstein's evolution equations

    Full text link
    BSSN-type evolution equations are discussed. The name refers to the Baumgarte, Shapiro, Shibata, and Nakamura version of the Einstein evolution equations, without introducing the conformal-traceless decomposition but keeping the three connection functions and including a densitized lapse. It is proved that a pseudo-differential first order reduction of these equations is strongly hyperbolic. In the same way, densitized Arnowitt-Deser-Misner evolution equations are found to be weakly hyperbolic. In both cases, the positive densitized lapse function and the spacelike shift vector are arbitrary given fields. This first order pseudodifferential reduction adds no extra equations to the system and so no extra constraints.Comment: LaTeX, 16 pages, uses revtex4. Referee corections and new appendix added. English grammar improved; typos correcte

    The constraints as evolution equations for numerical relativity

    Full text link
    The Einstein equations have proven surprisingly difficult to solve numerically. A standard diagnostic of the problems which plague the field is the failure of computational schemes to satisfy the constraints, which are known to be mathematically conserved by the evolution equations. We describe a new approach to rewriting the constraints as first-order evolution equations, thereby guaranteeing that they are satisfied to a chosen accuracy by any discretization scheme. This introduces a set of four subsidiary constraints which are far simpler than the standard constraint equations, and which should be more easily conserved in computational applications. We explore the manner in which the momentum constraints are already incorporated in several existing formulations of the Einstein equations, and demonstrate the ease with which our new constraint-conserving approach can be incorporated into these schemes.Comment: 10 pages, updated to match published versio

    Advantages of modified ADM formulation: constraint propagation analysis of Baumgarte-Shapiro-Shibata-Nakamura system

    Get PDF
    Several numerical relativity groups are using a modified ADM formulation for their simulations, which was developed by Nakamura et al (and widely cited as Baumgarte-Shapiro-Shibata-Nakamura system). This so-called BSSN formulation is shown to be more stable than the standard ADM formulation in many cases, and there have been many attempts to explain why this re-formulation has such an advantage. We try to explain the background mechanism of the BSSN equations by using eigenvalue analysis of constraint propagation equations. This analysis has been applied and has succeeded in explaining other systems in our series of works. We derive the full set of the constraint propagation equations, and study it in the flat background space-time. We carefully examine how the replacements and adjustments in the equations change the propagation structure of the constraints, i.e. whether violation of constraints (if it exists) will decay or propagate away. We conclude that the better stability of the BSSN system is obtained by their adjustments in the equations, and that the combination of the adjustments is in a good balance, i.e. a lack of their adjustments might fail to obtain the present stability. We further propose other adjustments to the equations, which may offer more stable features than the current BSSN equations.Comment: 10 pages, RevTeX4, added related discussion to gr-qc/0209106, the version to appear in Phys. Rev.

    An isopentenyl transferase transgenic wheat isoline exhibits less seminal root growth impairment and a differential metabolite profile under Cd stress

    Get PDF
    Cadmium is one of the most important contaminants and it induces severe plant growth restriction. In this study, we analyzed the metabolic changes associated with root growth restriction caused by cadmium in the early seminal root apex of wheat. Our study included two genotypes: the commercial variety ProINTA Federal (WT) and the PSARK::IPT (IPT) line which exhibit high-grade yield performance under water deficit. Root tips of seedlings grown for 72 h without or with 10 μM CdCl2 (Cd-WT and Cd-IPT) were compared. Root length reduction was more severe in Cd-WT than Cd-IPT. Cd decreased superoxide dismutase activity in both lines and increased catalase activity only in the WT. In Cd-IPT, ascorbate and guaiacol peroxidase activities raised compared to Cd-WT. The hormonal homeostasis was altered by the metal, with significant decreases in abscisic acid, jasmonic acid, 12-oxophytodienoic acid, gibberellins GA20, and GA7 levels. Increases in flavonoids and phenylamides were also found. Root growth impairment was not associated with a decrease in expansin (EXP) transcripts. On the contrary, TaEXPB8 expression increased in the WT treated by Cd. Our findings suggest that the line expressing the PSARK::IPT construction increased the homeostatic range to cope with Cd stress, which is visible by a lesser reduction of the root elongation compared to WT plants. The decline of root growth produced by Cd was associated with hormonal imbalance at the root apex level. We hypothesize that activation of phenolic secondary metabolism could enhance antioxidant defenses and contribute to cell wall reinforcement to deal with Cd toxicity

    Bondian frames to couple matter with radiation

    Full text link
    A study is presented for the non linear evolution of a self gravitating distribution of matter coupled to a massless scalar field. The characteristic formulation for numerical relativity is used to follow the evolution by a sequence of light cones open to the future. Bondian frames are used to endow physical meaning to the matter variables and to the massless scalar field. Asymptotic approaches to the origin and to infinity are achieved; at the boundary surface interior and exterior solutions are matched guaranteeing the Darmois--Lichnerowicz conditions. To show how the scheme works some numerical models are discussed. We exemplify evolving scalar waves on the following fixed backgrounds: A) an atmosphere between the boundary surface of an incompressible mixtured fluid and infinity; B) a polytropic distribution matched to a Schwarzschild exterior; C) a Schwarzschild- Schwarzschild spacetime. The conservation of energy, the Newman--Penrose constant preservation and other expected features are observed.Comment: 20 pages, 6 figures; to appear in General Relativity and Gravitatio

    BCR-ABL induces the expression of Skp2 through the PI3K pathway to promote p27Kip1 degradation and proliferation of chronic myelogenous leukemia cells

    Get PDF
    Chronic myelogenous leukemia (CML) is characterized by the expression of the BCR-ABL tyrosine kinase, which results in increased cell proliferation and inhibition of apoptosis. In this study, we show in both BCR-ABL cells (Mo7e-p210 and BaF/3-p210) and primary CML CD34+ cells that STI571 inhibition of BCR-ABL tyrosine kinase activity results in a G(1) cell cycle arrest mediated by the PI3K pathway. This arrest is associated with a nuclear accumulation of p27(Kip1) and down-regulation of cyclins D and E. As a result, there is a reduction of the cyclin E/Cdk2 kinase activity and of the retinoblastoma protein phosphorylation. By quantitative reverse transcription-PCR we show that BCR-ABL/PI3K regulates the expression of p27(Kip1) at the level of transcription. We further show that BCR-ABL also regulates p27(Kip1) protein levels by increasing its degradation by the proteasome. This degradation depends on the ubiquitinylation of p27(Kip1) by Skp2-containing SFC complexes: silencing the expression of Skp2 with a small interfering RNA results in the accumulation of p27(Kip1). We also demonstrate that BCR-ABL cells show transcriptional up-regulation of Skp2. Finally, expression of a p27(Kip1) mutant unable of being recognized by Skp2 results in inhibition of proliferation of BCR-ABL cells, indicating that the degradation of p27(Kip1) contributes to the pathogenesis of CML. In conclusion, these results suggest that BCR-ABL regulates cell cycle in CML cells at least in part by inducing proteasome-mediated degradation of the cell cycle inhibitor p27(Kip1) and provide a rationale for the use of inhibitors of the proteasome in patients with BCR-ABL leukemias

    A hyperbolic slicing condition adapted to Killing fields and densitized lapses

    Full text link
    We study the properties of a modified version of the Bona-Masso family of hyperbolic slicing conditions. This modified slicing condition has two very important features: In the first place, it guarantees that if a spacetime is static or stationary, and one starts the evolution in a coordinate system in which the metric coefficients are already time independent, then they will remain time independent during the subsequent evolution, {\em i.e.} the lapse will not evolve and will therefore not drive the time lines away from the Killing direction. Second, the modified condition is naturally adapted to the use of a densitized lapse as a fundamental variable, which in turn makes it a good candidate for a dynamic slicing condition that can be used in conjunction with some recently proposed hyperbolic reformulations of the Einstein evolution equations.Comment: 11 page
    corecore