2 research outputs found

    Characterization of Optical Coherence Tomography Images for Colon Lesion Differentiation under Deep Learning

    Get PDF
    (1) Background: Clinicians demand new tools for early diagnosis and improved detection of colon lesions that are vital for patient prognosis. Optical coherence tomography (OCT) allows microscopical inspection of tissue and might serve as an optical biopsy method that could lead to in-situ diagnosis and treatment decisions; (2) Methods: A database of murine (rat) healthy, hyperplastic and neoplastic colonic samples with more than 94,000 images was acquired. A methodology that includes a data augmentation processing strategy and a deep learning model for automatic classification (benign vs. malignant) of OCT images is presented and validated over this dataset. Comparative evaluation is performed both over individual B-scan images and C-scan volumes; (3) Results: A model was trained and evaluated with the proposed methodology using six different data splits to present statistically significant results. Considering this, 0.9695 (_0.0141) sensitivity and 0.8094 (_0.1524) specificity were obtained when diagnosis was performed over B-scan images. On the other hand, 0.9821 (_0.0197) sensitivity and 0.7865 (_0.205) specificity were achieved when diagnosis was made considering all the images in the whole C-scan volume; (4) Conclusions: The proposed methodology based on deep learning showed great potential for the automatic characterization of colon polyps and future development of the optical biopsy paradigm.This work was partially supported by PICCOLO project. This project has received funding from the European Union’s Horizon2020 Research and Innovation Programme under grant agreement No. 732111. This research has also received funding from the Basque Government’s Industry Department under the ELKARTEK program’s project ONKOTOOLS under agreement KK-2020/00069 and the industrial doctorate program UC- DI14 of the University of Cantabria

    Novel Pixelwise Co-Registered Hematoxylin-Eosin and Multiphoton Microscopy Image Dataset for Human Colon Lesion Diagnosis

    Get PDF
    Colorectal cancer presents one of the most elevated incidences of cancer worldwide. Colonoscopy relies on histopathology analysis of hematoxylin-eosin (H&E) images of the removed tissue. Novel techniques such as multi-photon microscopy (MPM) show promising results for performing real-time optical biopsies. However, clinicians are not used to this imaging modality and correlation between MPM and H&E information is not clear. The objective of this paper is to describe and make publicly available an extensive dataset of fully co-registered H&E and MPM images that allows the research community to analyze the relationship between MPM and H&E histopathological images and the effect of the semantic gap that prevents clinicians from correctly diagnosing MPM images. The dataset provides a fully scanned tissue images at 10x optical resolution (0.5 m/px) from 50 samples of lesions obtained by colonoscopies and colectomies. Diagnostics capabilities of TPF and H&E images were compared. Additionally, TPF tiles were virtually stained into H&E images by means of a deep-learning model. A panel of 5 expert pathologists evaluated the different modalities into three classes (healthy, adenoma/hyperplastic, and adenocarcinoma). Results showed that the performance of the pathologists over MPM images was 65% of the H&E performance while the virtual staining method achieved 90%. MPM imaging can provide appropriate information for diagnosing colorectal cancer without the need for H&E staining. However, the existing semantic gap among modalities needs to be corrected.This work was supported by the PICCOLO project. This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement No. 732111. The sole re- sponsibility of this publication lies with the authors. The European Union is not responsible for any use that may be made of the information contained therei
    corecore