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Featured Application: Automatic diagnosis of colon polyps on optical coherence tomography
(OCT) images for the development of computer-aided diagnosis (CADx) applications.

Abstract: (1) Background: Clinicians demand new tools for early diagnosis and improved detection
of colon lesions that are vital for patient prognosis. Optical coherence tomography (OCT) allows mi-
croscopical inspection of tissue and might serve as an optical biopsy method that could lead to in-situ
diagnosis and treatment decisions; (2) Methods: A database of murine (rat) healthy, hyperplastic and
neoplastic colonic samples with more than 94,000 images was acquired. A methodology that includes
a data augmentation processing strategy and a deep learning model for automatic classification
(benign vs. malignant) of OCT images is presented and validated over this dataset. Comparative
evaluation is performed both over individual B-scan images and C-scan volumes; (3) Results: A
model was trained and evaluated with the proposed methodology using six different data splits
to present statistically significant results. Considering this, 0.9695 (±0.0141) sensitivity and 0.8094
(±0.1524) specificity were obtained when diagnosis was performed over B-scan images. On the other
hand, 0.9821 (±0.0197) sensitivity and 0.7865 (±0.205) specificity were achieved when diagnosis
was made considering all the images in the whole C-scan volume; (4) Conclusions: The proposed
methodology based on deep learning showed great potential for the automatic characterization of
colon polyps and future development of the optical biopsy paradigm.

Keywords: colon cancer; colon polyps; OCT; deep learning; optical biopsy; animal rat models; CADx

1. Introduction

Colon cancer is the second most common cause of cancer death in Europe both for
women and men, and the third most common cancer worldwide [1]. About 1.8 million new
cases of colorectal cancer were recorded globally in 2018 [2], being the third most common
cancer in men and second in women. The five-year survival rate is 90 percent for colorectal
cancers diagnosed at an early stage, but unfortunately only 4 out of 10 cases are found this
early [3].
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Clinicians demand new non-invasive technologies for early diagnosis of colon polyps,
especially to distinguish between benign and malignant or potentially malignant lesions
that must be resected immediately. New methods should also proportionate information
for safety margin resection and remaining tissue inspection after resection to decrease the
possibility of tumor recurrence and improve patient prognosis. The current gold-standard
imaging technique during patient examination is colonoscopy with narrow band red-flag
technology for improved lesion visualization. During the procedure, lesions can be classi-
fied with Paris (morphology) [4] and Nice (vessel and surface) [5] classification patterns
based on the physician experience. As this superficial information is not enough, the final
diagnosis of the lesion is determined by the histopathological analysis after biopsy, mean-
ing that all the suspicious polyps are resected. Bleeding related problems usually occur
after biopsies are performed, with the risks that this entails for the patient. In fact, most
problems occur when the biopsy is performed on a blood vessel and the incidence is higher
when it is performed on patients with an abnormal blood coagulation function [6]. In
relation to the latter, the rate of perforation associated to colonoscopies with polypectomy is
0.8/1000 (95% confidence interval (CI) 0.6–1.0) and the rate of bleeding related to polypec-
tomies is 9.8/1000 (95% confidence interval (CI) 7.7–12.1) [7]. However, it is demonstrated
that hyperplastic polyps are of a benign nature and can be left untouched, avoiding the
underlying bleeding risk of resection, saving diagnosis time, costs, and patient trauma
during that period [8]. On the other side, pre-malignant lesions and adenomatous polyps
cannot be distinguished from neoplastic lesions as adenocarcinoma with the current diag-
nosis methods. In this sense, new imaging techniques and interpretation methods could
allow real-time diagnosis and would facilitate better in-situ treatment of lesions, improving
patient prognosis, especially if the diagnosis is made at early stages of the disease.

In recent years, different advanced imaging technologies that allow sub-surface mi-
croscopical inspection of tissue in an “optical-biopsy” manner have been under study for
colonic polyps [9], such as: reflectance confocal microscopy (RCM) [10], multi-photon mi-
croscopy (MPM) [11], and optical coherence tomography (OCT) [12], among others. Of the
mentioned techniques, a device called Cellvizio based on confocal laser endomicroscopy
(CLE) is the only one commercially available. Using confocal mini-probes inserted in
the working channel of flexible endoscopes, the system is used for studying the cellular
and vascular microarchitecture of tissue. Colorectal lesions diagnosis [13–15] is one of
the targeted applications and the corresponding probe reports a field-of-view (FOV) of
240 µm, 1 µm resolution and 55 to 65 µm confocal depth, with 20 maximum uses. The
inconvenience of this system is that the successful usage by clinicians depends on specific
training on image interpretation. Moreover, the main limitation is that this technology
requires the use of an exogenous fluorophore which results in a more invasive procedure
for the patient. In the case of MPM [16,17], which relies on the absorption of an external or
endogen (as collagen) tissue fluorophore, high resolution images at sub-cellular level can
also be obtained to study structural information, including also functional information. The
mentioned ex vivo studies using this technology have revealed significant morphological
differences between healthy and cancerous tissue. However, the interpretation of MPM
images by clinicians also remains a challenge and relies on their expertise in histopathology.

In contrast, OCT provides sub-surface structural information of the lesion under a
label-free approach, with reported resolutions less than 10 µm and penetration capacities
up to 2 mm. OCT can be used in combination with MPM, as both technologies provide
complementary information useful for diagnosis assessment. While RCM and MPM 2D
images are obtained horizontally in the transversal plane (also called “en-face”), OCT 2D
images (B-scan) are obtained axially in depth in the coronal or sagittal plane. Furthermore,
since OCT also allows obtaining 3D images (C-scan), lesions can be studied volumetrically
from different points or axes of visualization. Although OCT images have less resolution
than RCM and MPM images, the penetration capacity is higher, and the acquisition time is
generally lower. This OCT aspect is of great importance to evaluate lesion margins and
tumor infiltration into the mucosa under real-time situations in clinical environments.
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OCT technology capabilities in the diagnosis of colon polyps have been investigated
in the latest years with promising results on the future adoption in clinical practice. Several
studies [18–21], both in murine and human models, have reported the identification of
tissue layers and the discrimination capacities of the technology on the differentiation
of different types of benign (including healthy) and malignant tissue. When analyzing
44 polyps from 24 patients [18], endoscopists detected fewer subsurface structures and a
lower degree of light scattering in adenomas, and that, in comparison, hyperplastic polyps
were closer in structure and light scattering to healthy mucosa. The scattering property
was calculated by a computer program applying statistical analysis (Fisher–Freeman–
Halton test and Spearman rank correlation test), confirming the previous appreciation.
A comparison of OCT images with respect to histopathological images was performed
in [19] using previously defined criteria for OCT image interpretation on the identification
of tissue layers. Upon the observations, hyperplastic polyps are characterized by a three-
layer structure (with mucosa thickening) whereas adenomas are characterized by the
lack of layers. Then, under these assumptions, measured over a group of 116 polyps
from patients, lesions could be visually differentiated in OCT images with 0.92 sensitivity
and 0.84 specificity. Later, a fluorescence-guided study performed on 21 mice [20] after
administrating a contrast agent showed the OCT ability to differentiate healthy mucosa,
early dysplasia, and adenocarcinoma. Visual analysis of normal tissue revealed that the
submucosa layer is very thin in some specimens and not always well appreciated in the
OCT images, although the tissue boundaries remain distinguishable. In adenoma polyps, a
thickening of the mucosa (in first stages) or disappearance of the boundary between layers
is detected, whereas in the case of adenocarcinoma, the OCT images showed a loss of tissue
texture, absence of layers, and the presence of dark spots caused by the high absorption in
necrotic areas. In the latest study [21], they go beyond and propose a diagnosis criterion
over micro OCT images with some similarities to the Kudo pit pattern [22] and demonstrate
the diagnosis capacity of the OCT technology as clinicians can reach 0.9688 sensitivity and
0.9231 specificity on the identification of adenomas over 58 polyps from patients.

Both the cross sectional and the en-face images have been shown to provide clinically
relevant information in the mentioned studies, and the combination of both views for the
detailed study of tissue features suggests an important advance [23–25]. In addition to
previous studies, the calculation of the angular spectrum of the scattering coefficient map
has also revealed quantifiable variances on the different tissue types [26].

The clinical characteristics of the lesions that can be observed on the OCT images can be
further exploited by image-based analysis. Image and signal processing methods can allow
dealing with the noisy nature of the signal, whereas machine learning algorithms are able
to exploit the spatial correlation of the biological structures to make the most of them. These
types of algorithms can detect, and quantify, subtle variations on images that the naked
human eye cannot and can be applied with the goal of performing automatic interpretation
of the images for image enhancement, lesion delimitation, or classification tasks. However,
as seen in previously reviewed studies, few attempts of applying these methods for colon
polyps on OCT images have been found, showing that there are opportunities of research
in the area.

The main limitation of traditional machine learning methods is the need to process the
original data from their natural form to another form of representation appropriate for the
targeted problem. Image processing methods must be carefully applied to extract the most
representative features of the data, aiming to resemble how the experts analyze the images.
Then, the extracted features are passed as input to the selected classifier method. Unlike
deep learning approaches, traditional machine learning methods require tailored feature
extraction which is followed by a shallow machine learning method. This makes them less
prone to generalization and leads to lower discriminative power [27]. Under the deep learn-
ing paradigm, image feature extraction and classification are simultaneously performed
through a network architecture representing all possible solution domains and which is
optimized by means of a loss function minimization that seamlessly drives the network
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parameters towards a suitable solution. Convolutional neural networks (CNN) [28,29]
have surpassed classical machine learning methods [30,31], and even medical expert capa-
bilities [32–34]. They have been also successfully applied in colon cancer histopathological
classification [35,36], MPM classification [37], polyp detection on colonoscopy [38–40], or
histological colon tissue staining [41].

The application of deep learning methods to OCT medical images is a recent trend and
only few examples of application are available. Ophthalmology being the oldest context of
application of OCT, most examples are found in this area, and some others in cardiology
and breast cancer [42–45]. In gastroenterology of the lower track (colon), only one recent
work has been identified [46]. A pattern recognition network called RetinaNet [47] has been
trained to distinguish normal from neoplastic tissue with a 1.0 sensitivity and 0.997 speci-
ficity. The success of the model is based on a dentate structural pattern, identified in
normal tissue in previous studies, being utilized as a structural marker on the images used
as input during training and evaluation. In this sense, the B-scan images on the dataset
(26,000 images acquired from 20 tumor areas) are manually inspected to identify “teeth”
samples representing normal colonic mucosa and “noisy” samples representing malignant
tissue. On evaluation, the network provides a list of boxes where these patterns are found
along with the probability, and average scores are calculated over a sequence of N adjacent
B-scan images. The drawback of this approach resides in the identification of the “teeth”
pattern in normal tissue, but no other patterns have been identified for malignant tissue,
just assuming that the “teeth” pattern does not appear in that case.

The work presented in this paper further investigates the application of deep learning
methods over a collected database with more than 94,000 OCT images of murine (rat) colon
polyps to study the discrimination capacity of this imaging technique for its future adoption as
a real-time optical biopsy method. The aim of this proposal is to contribute to setting the bases
for the automatic analysis of images with latest state-of-the-art techniques that could lead to
the development of new computer-aided diagnosis (CADx) applications. Once image analysis
methods demonstrate this capacity, colon polyp diagnosis with OCT can be progressively
mastered by clinicians and the adoption of the technology naturally accomplished. With
this aim, this work implements a classification (benign vs. malignant) approach based on
an Xception deep learning model that is trained and tested over a large dataset of OCT
images from murine (rat) samples that have been collected for this purpose. We propose
a pre-processing method for data augmentation and to validate the application of deep
learning methods for colon polyp classification as benign or malignant. In addition, to further
investigate the diagnosis capacity of the proposed approach, evaluation is performed twice,
once over individual B-scan images and then also over C-scan volumes for comparison.
Finally, a strategy to maximize results when evaluating individual B-scans is applied.

In comparison with previous studies [46], this work proposes a general diagnosis strat-
egy based on classification instead of pattern recognition, which avoids time consuming
manual annotation of the database providing automatic identification of the characteristics
representing polyps tissue type. The classification strategy model can generalize better
upon new polyp categories than the segmentation strategy, the performance of which is
biased by the available annotations of the database. A classification strategy can help in
the identification of subtle characteristics present on noisy OCT images that are not easily
distinguished by the naked eye, and with proper visualization of them, can help clinicians
to better understand the OCT imaging technique. In the future, the combination of both
approaches could be considered for maximizing automatic diagnosis results.

2. Materials and Methods
2.1. Animal Models

Sixty animals with colorectal cancer (CRC) from the strain PIRC (polyposis in the
rat colon) rat F344/NTac-Apcam1137 model (sex ratio: 50/50) from the Rat Resource and
Research Centre (RRRC) were used for the extraction of neoplastic colonic samples. This
animal model was used in the study for the following main reasons: (a) it is an excellent
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model for studying human familial colon cancer; (b) ENU (N-ethyl-N-nitrosourea)-induced
point mutation results in a truncating mutation in the APC (adenomatous polyposis
coli) gene at a site corresponding to the human mutation hotspot region of the gene;
(c) heterozygotes develop multiple tumors in the small intestine and colon by 2–4 months
of age; (d) PIRC tumors closely resemble those in humans in terms of histopathology and
morphology as well as distribution between intestine and colon; (e) provides longer lifespan
compared to related mouse models (10–15 months); and (f) tumors may be visualized by CT
(computerized tomography), endoscopy, or dissection. Moreover, the absolute incidence
and multiplicity of colonic tumors are higher in F344-PIRC rats than in carcinogen-treated
wild-type F344 rats, or in mice [48,49].

Additionally, thirty rats from the strain Fischer344—F344 wildtype model (sex ratio:
50/50) were used for the development and extraction of hyperplastic colonic samples. A rat
surgical model of hyperplasia in the colon was developed in novo for endoscopic applica-
tions. It recreates important features of human hyperplasia, such as the generation of new
cells in the colonic mucosa and tissue growth, as well as the corresponding angiogenesis. It
consists of an extracolonic suture on which lesions are inflicted with a biopsy extraction
forceps during a period established in different weekly follow-ups for the correct induction
of the model [50,51].

Finally, as a control group, ten healthy tissue samples from three specimens were
extracted from the colon of rats from the strain Fischer344—F344 wildtype model (sex ratio:
50/50). Uninvolved areas of the hyperplasia animals (ascending colon, transverse colon,
and regions of the descending colon without lesion) were used as healthy tissue samples.
This ensured meeting one of the three r’s of animal research that aims to maximize the
information obtained per animal, making it possible to limit or avoid further use of other
animals, without compromising animal welfare.

2.2. Equipment

The equipment used for imaging the murine (rat) samples was a CALLISTO from
Thorlabs (CAL110C1) [52] spectral domain system with central wavelength 930 nm, field
of view of 6 × 6 mm2, 7 µm axial resolution, 4 µm lateral resolution, 1.7 mm measurement
in depth, 107 dB sensitivity at 1.2 kHz measurement speed, and 7.5 mm working distance.
Samples were scanned using the high-resolution scan lens (18 mm focal length) and a
standard probe head with a rigid scanner for stable and easy-to-operate setup.

2.3. Acquisition Procedure
2.3.1. Sample Acquisition Procedure

Rats were acclimatized before surgery in individually housed cages at 22–25 ◦C
with food and water ad libitum. All surgical procedures were performed under general
inhalation anesthesia [53–55] by placing them in an induction chamber to administrate
sevoflurane 6–8% in oxygen with a high flow of fresh gas (1 L/min). Then, they were
connected to a face mask to continue the administration of sevoflurane (3–3.5%) in oxygen
(300 mL/min) and placed in dorsal decubitus to carry out the endoscopic procedure.
Atropine (0.05 mg/kg), meloxicam (1 mg/kg/24 h), and pethidine (10–20 mg/kg) were
injected subcutaneously before beginning the surgical procedure. A thermal blanket was
used throughout the procedure. Once the animals had acquired the appropriate surgical
plane, a colonoscopy was performed to rule out the presence of abnormalities that could
interfere with the study. The aim was locating all those lesions that could be found through
observation by using white light and a rigid cystourethroscope of 2.9 mm in diameter,
which reached a diameter of up to 5 mm when working with an intermediate sheath and an
external sheath (size appropriate for this animal model), with the objective of not damaging
said structures at the start of the procedure. After shaving the abdomen and preparing the
area with povidone-iodine and 70% ethanol, animals were covered with an open sterile
cloth. Then, an average laparotomy of 4–5 cm in length was performed. A retraction
device with hooks (Lonestar®) was used as support tool to make this section circular and
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externalize all the necessary intestinal content outside the abdomen. Animals were kept at
constant temperature thanks to successive peritoneal washes made with tempered serum.
Then, the block of the colon was fixated with a suture to prevent the reversion of the content
throughout the colon and cecum. Three areas (ascending colon, transverse colon, and
descending colon) were studied consecutively taking advantage of the anatomical division
of the colon. They were divided with the help of ligatures (silk 4/0) through the mesentery
of each portion and scanned in the proximal to distal direction making use of the rigid
cystoscope to check the number of polyps.

At each point with lesions, a disposable bulldog clamp was used to mark the distribu-
tion of the lesions, thus avoiding cutting the lesions in the next procedure of colostomy
of ascending and transverse portions. After that, the colon was extracted in block and
then, the animals were euthanized under general inhalation anesthesia by rapid intracar-
diac injection of potassium chloride (KCl) (2 mEq/kg, KCl 2M), according to the ethical
committee recommendations. The colon was opened by a longitudinal colotomy with the
help of scissors to eliminate the tube shape of the colon, exposing thus the mucosa with
the localized polyps to improve their visualization, handling, and analysis. At this time,
magnification was provided by a STORZ VITOM® HD for a better location of the lesions
with the extended organ.

For each localized lesion, a sample was extracted for later ex vivo analysis with the
OCT equipment. Instead of acquiring the images directly on the fresh sample after resection,
samples were fixed and then preserved for several further analyses while maintaining the
properties of the tissue. Based on [56], the fixation procedure for each sample consisted
in the immersion of the sample in 4% formaldehyde for at least 14 h at about 4 ◦C. Then,
after two washes with phosphate buffered saline 0.01 M (PBS) each 30 min, the sample
was submerged in PBS and 0.1% of sodium azide and stored in refrigeration at 4 ◦C. This
method was established to provide safer handling of samples, avoiding the adverse effects
of manipulating formaldehyde-embedded samples in a surgical environment. Additionally,
it was checked with histopathological analysis that this fixation procedure did not alter the
properties of the tissue, showing no noticeable differences from fresh tissue.

2.3.2. Image Acquisition Protocol

First, each sample was placed on a plate, secured, and fixed for the correct exposure of
the tissue. Once placed on the platform under the OCT probe, a B-scan of the sample was
acquired for further calibration of the equipment. While scanning, the sample was focused
by approaching the OCT probe. The super-fine focus allows to acquire a high-quality OCT
signal with the better penetration depth. Due to the anatomical differences of the samples,
it was always necessary to repeat this step for each new sample. Once the sample was
properly focused and the 2D signal quality optimized, the next step was the acquisition of
a C-scan of the sample. In this case, the software allowed drawing a rectangle (Figure 1)
indicating where to perform the 3D acquisition on the sample. When considered, various
3D scans covering different parts of the lesion were recorded for the same lesion.
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2.3.3. Dataset Summary

The database consists of healthy, hyperplastic, and neoplastic (adenomatous and
adenocarcinoma) samples. Following the previously described acquisition procedure, the
subsequent number of cases were included in the database for each tissue type: 10 healthy
samples with 48 C-scans, 13 hyperplastic samples with 53 C-scans, and 75 neoplastic
samples with 245 C-scans. As a result, the database contains a total of 94,687 B-scan images.

The database was visually inspected before training the model ignoring all C-scans or
B-scan images acquired with errors, large aberrations, or artifacts to ensure the quality of
the data. Note that this database is a preliminary version of an ongoing larger dataset that
will be made openly available. Access to the database used in this article is possible upon
request to the corresponding author.

2.4. Ethical Considerations

Ethical approvals for murine (rat) samples acquisition were obtained from the relevant
Ethics Committees. In case of research with animals, it was approved by the Ethical
Committee of animal experimentation of the Jesús Usón Minimally Invasive Surgery
Centre (Number: ES 100370001499) and was in accordance with the welfare standards of
the regional government which are based on European regulations.

2.5. Deep Learning Architecture

The proposed architecture was based on the Xception classification model [57] previ-
ously trained over the ImageNet dataset [58]. Then, a global average pooling layer and a
final layer with 2 neurons and softmax activation were added, representing the classifica-
tion classes: benign vs. malignant. A schematic view of the architecture, generated with a
visual grammar tool [59], is provided in Figure 2.
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sizes in the range 512–2000 pixels due to differences in the sizes of the polyps and scanning
area selected. For this reason, B-scan images were pre-processed to extract regions of
interest of smaller size (299 × 299 pixels) to make the most of the images and avoid losing
lesion structural features on the bigger images that would happen with image rescaling.
Directly rescaling the whole image could be comparable to reducing the lateral and axial
resolution of the images, and hence losing information about the smaller structures. The
proposed data preparation approach also serves as a data augmentation strategy. Moreover,
a strategy for dealing with data imbalance in the dataset was also adopted.

2.5.1. Data Preparation and Augmentation

As a data augmentation strategy, during the training process, the algorithm processes
the dataset images in the following manner: image pre-processing; air-tissue delimitation;
random selection of region of interest (ROI); ROI extraction; and ROI preparation. These
steps are illustrated in Figure 3.
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selection of region of interest (ROI), 4. ROI extraction, and 5. ROI preparation.

1. Image pre-processing

The OCT gray scale original image contains one single channel that is duplicated to
generate the 3-channel image expected by the network to use the ImageNet pre-trained weights.
As an additional data augmentation strategy, the image is randomly flipped horizontally to
produce alternative input images. No additional geometric transformations are applied to the
image, as this would alter the structural features of the lesion and lead to misclassification.

2. Air-tissue delimitation

The aim of this step is to automatically detect on the image the delimitation between
the air and the tissue. The final goal of this operation is to obtain ROI images adjusted to
the tissue, so the noise present in the air part and the differences on the distance from the
scanning tip to the tissue in the database images do not provide ambiguous information to
the network. Conversely, the shape of the lesion is preserved, and flattering is discarded, as
this could be a clinically interesting feature for differentiating the lesion’s diagnostic nature.

This step was implemented following the next sub-steps: automatic calculation of
Otsu threshold [60] to differentiate between the air and the tissue regions; binary mask
generation applying the calculated Otsu threshold to the image; morphological operation
to remove small objects from the binary mask; then, for each column in the mask image,
extraction of the location (row) of the first positive (true) value if available, to obtain a 1D
array containing the delimitation path; and application of a median filter (kernel size = 69)
to the delimitation array to eliminate or smooth possible noise in the signal.
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3. Random selection of region of interest

Considering that the total width of the input image (number of A-scans) is highly
variable for the different images of the dataset due to the sample size and scanning conditions,
a random number indicating where to start the region of interest is calculated. A preliminary
sub-image (column) is obtained considering a width of 512 px for the region of interest.

4. ROI extraction

The values of the delimitation array are applied to the previously extracted sub-image
to adjust the tissue at the top, generating a ROI of 512 px width and 224 px depth, which is
equivalent to approximately 0.71 mm in width and 0.75 mm in depth considering the optics
of the device. Preliminary experiments with fewer widths or longer depths reported worse
results. Smaller ROIs reduce the maintained information worsening the feature extraction and
classification performance, so it is important to reach an agreement between both aspects.

5. ROI preparation (post-processing)

The extracted ROIs are resized to 229 px width and 299 px depth to match the default
input size of the network (pre-trained with ImageNet).

2.5.2. Data Imbalance Management

This work aims at differentiating benign samples, including healthy tissue and hyper-
plastic polyps, from malignant/neoplastic samples, including adenomatous and adenocar-
cinomatous samples. Unfortunately, in our dataset, healthy and hyperplastic samples are
underrepresented with respect to neoplastic samples. Data imbalance is a usual problem
and for the moment there is not a best strategy for dealing with it, as it mostly depends on
the problem to solve and on data characteristics. In this work, a resampling strategy was
implemented. This strategy was preferred to weight balance compensation, where weights
of each class are calculated and specified on network fitting, as in the authors’ experience,
it provides better results.

Resampling is a classical strategy for dealing with data imbalance. Over-sampling
means adding more samples to the minority class, whereas under-sampling means remov-
ing samples for the majority class. Over-sampling and under-sampling can be achieved
following different strategies, with the weakness that these may imply. The simplest way
is to randomly duplicate or remove samples.

In this work, we implemented an over-sampling strategy by adding new samples for
the minority class. However, these new samples were not exact copies of original data,
as small variations were introduced to create a diverse set of samples. As described in
the previous section, dataset images were manipulated for randomly obtaining ROIs (see
Figure 3), that in addition were randomly horizontally flipped, which allowed introducing
this variability in the training and validation set.

2.5.3. Training Process

The implemented network was based on a Xception model [57], where a global
average pooling layer followed by a dense layer (with two outputs and softmax activation)
to deal with a 2-class problem (benign vs. malignant) was added at the end. Pre-trained
weights of ImageNet were used [58].

Categorical cross entropy loss was minimized by an Adam optimizer with a learning
rate of 0.0001 during the training process. The selected batch size is 24, for a number
of 100 epochs and validation loss minimization was monitored for early stopping (with
patience 20). The training process was repeated 6 times over different data splits to make
sure that the provided results were not biased.

2.5.4. Data Evaluation and Test-Time Augmentation

As described before, OCT C-scans were acquired from murine (rat) polyp samples
and adjacent healthy tissue. The C-scans are 3D volumes that consist of consecutive and
adjacent B-scan images. For some of the polyps, several C-scans covering different parts of
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the lesion (upper, center, and bottom) were obtained and included in the same data split.
As one of the aims of this work was to study the diagnosis capacity and limitations of OCT
in more detail, the evaluation of the model was designed with the intention of comparing
the discrimination capacity of the individual B-scans classification with respect to C-scans.

A test time augmentation (TTA) strategy was applied to B-scan and C-scan evalua-
tion. This was implemented by performing 10 augmentations over the data following the
random ROI extraction strategy previously described (see Figure 3) and then calculating
the mean prediction. By applying this strategy, we estimated a richer posterior probability
distribution function of the prediction for the bigger (wider) B-scans. We present a compar-
ison of the results without TTA (called standard) and with TTA to facilitate studying how
this technique contributed to the proposed approach.

3. Results
3.1. OCT and H&E Histology Comparative Analysis

Before performing the analysis, it was important to consider that some anatomical
differences exist between human colon and murine colon structure. According to [61], in
human and rats species, the colon maintains the same mural structure as the rest of the
gastrointestinal tract: mucosa, submucosa, and inner circular and outer longitudinal tunica
muscularis and serosa. The mucosa and submucosa layers in mice are relative thin in
comparison with the human ones. Furthermore, human mucosa has transverse folds through
the entire colon, whereas in mice it varies for each part of the colon. At the cecum and
proximal colon, mouse mucosa has transverse folds, in the mid colon is flat, and in the distal
colon has longitudinal folds. However, in both species the mucosa is composed of tubular
glands. Taking this into account and considering that the database used in this work consists
of murine (rat) samples, it was expected that the model also learn these anatomical differences
present in the mucosa, especially for the healthy samples. A detailed comparison of the
anatomical differences (extracted from reference [61]) is provided in Table A1.

According to previous studies analyzing features on OCT images [18–21], in normal
tissue, well-defined layers can be visualized with uniform intensity. In the presence
of hyperplasia, thickening of the mucosa layer occurs, but the intensity is similar to
healthy tissue and tissue layers are still visible. However, in the case of adenomatous
polyps, both thickening of the mucosa and reduced intensity must be observed. Finally,
adenocarcinomatous lesions should show blurred boundaries and non-uniform intensity.
In the presence of large polyps, the disappearance of the boundaries should be clearly
observed, independently from the lesion nature.

Visual inspection of dataset images was performed to look for the features previously
mentioned. Figures 4 and 5 provide a detailed analysis of the visible features on the OCT
images (of Figure 1 samples) with respect to the histopathological hematoxylin-eosin (H&E)
images annotated by a pathologist (scanned at 5x). Regions of interest (with the same FOV
of OCT images in mm) were extracted from H&E slides images and later rescaled to fit
axial and lateral resolution of the OCT images for better comparison. In these figures, it
can be observed that the main features present in H&E images can also be observed in
the OCT images. On the one hand, Figure 4, representing healthy tissue, illustrates (as
indicated by arrows and manual segmentation lines on the B-scans on the left, Figure 4A,B)
that the mucosa layers can be very clearly observed, confirming what has been reported
before in previous studies. Muscularis mucosae and sub-mucosa layers are also observed,
although clear differentiation in all parts of the image is tougher. On the other side,
when analyzing Figure 5 containing neoplastic lesions, it is also possible to confirm that
the boundaries of the layers have totally disappeared, making it impossible to find any
difference among them. Differences in the noise pattern are also observed. In addition, as
indicated using circles and arrows on the B-scans (Figure 5A,B), new underlying structures
appeared in the mucosa and can be identified as bright spots or dark areas in the images.
These new structures (in comparison with healthy tissue) are also clearly observed in the
corresponding annotated histopathology images (Figure 5C,D), where cystic crypts (CC)
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have been identified by the pathologist and appear as dark spots in the B-scan and tumoral
glands (TG) clusters as bright spots.
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3.2. Dataset Partitioning and Testing

The dataset was split such that 80% was dedicated to training, 10% to validation, and
10% to testing. It was assured that images coming from the same lesion (both B-scans and
C-scans) were included in only one of the sets. The animal models employed on the creation
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of the database were genetically modified replicas of one specimen, hence no separation
per specimen was necessary in splitting and lesions could be considered independently.

The model was tested on 6 different folds to ensure that the evaluation metrics propor-
tionated were not biased by one random dataset split. A random state seed parameter was
established for each fold to obtain different training, validation, and testing sets each time.

3.3. Performance Metrics and Evaluation

Given that both B-scan and C-scan data were available for the murine (rat) samples
acquired in the database, the clinical discrimination capability of the model on the dif-
ferentiation of benign versus malignant polyps was calculated for both types of data. To
evaluate each C-scan, the mean of the individual predictions for the B-scan images that
form the volume was calculated. The performance of the model was measured using the
conditions provided by the confusion matrix (see Table 1).

Table 1. Confusion matrix conditions for metrics calculation.

Actual Condition

Malignant Benign

Predicted
Condition

Malignant TP FP
Benign FN TN

In the clinical context being analyzed in this work, these conditions can be seen as:

• True positive (TP): Malignant lesion correctly identified as malignant.
• False positive (FP): Benign lesion incorrectly identified as malignant.
• True negative (TN): Benign lesion correctly identified as benign.
• False negative (FN): Malignant lesion incorrectly identified as benign.

The metrics that were employed to measure the model performance based on the
previous conditions are described below.

• Sensitivity. Also known as the true positive rate (TPR). Number of true/all positive
assessments. TPR = TP/(TP + FN) = number of malign lesions with positive test/total
number of malign lesions.

• Specificity. Also known as the true negative rate (TNR). Number of true/all negative
assessments. TNR = TN/(FP + TN) = number of benign lesions with negative test/total
number of benign lesions.

• Positive predictive value (PPV). In case of a malignant prediction, probability that the
lesion is actually malignant. PPV = TP/(TP + FP) = Number of true positives/number
of positive calls.

• Negative predictive value (NPV). In case of a benign prediction, probability that the
lesion is actually benign. NPV = TN/(TN + FN) = Number of true negatives/number
of negative calls.

The desired value for these metrics was as close as possible to 1, 1 meaning a perfect test.
Additionally, as the accuracy (measure of the number of samples that were correctly

classified in the expected class) is a misleading metric in imbalanced datasets, the balanced
accuracy was calculated. This metric normalizes true positive and true negative predic-
tions by the number of positive and negative samples, and then divides the sum by two,
providing an accuracy value where the class frequencies are the same.

• Balanced accuracy (BAC). Measures the number of samples that were correctly classified
in the expected class considering class frequencies. Number of correct/all assessments
considering class frequencies. BAC = (TPR + TNR)/2 = (Sensitivity + Specificity)/2.

3.4. Thresholds

Considering the prediction values provided by the model, the threshold that maxi-
mizes the BAC (in the range 0–1) was calculated over the validation subset of each fold
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split both for the B-scan and C-scan data. Then, this threshold was applied over the test
subset of each fold split to calculate the metrics of the model (BAC, sensitivity, specificity,
PPV, and NPV).

3.5. Classification Results

The evaluation of the model was performed on 6 folds, over different training, valida-
tion, and testing splits of the dataset each time, with the aim of obtaining a model ensemble.
As a result, the mean and standard deviation (std) were calculated for each of the selected
metrics. Table 2 provides a summary of the results, where the first number reports the mean
and the second the std (mean ± std). In this summary, the results obtained with B-scan
and C-scan images, standard, and TTA test split evaluation are included for comparison.
The complete list of results of each fold is included in Table A2. at the end of the document.
Additionally, a graph illustrating a fair comparison of the folds results following the sum
of ranking differences (SRDs) method [62] is provided in Figure A1. After calculating
the SRD coefficients for each of the options on the different folds, a graph comparing the
performance of the different options can be generated. The smaller the SRD value, the
closer to the reference value, meaning better performance.

Table 2. Summary of results by the network for the different imaging modalities (B-scan vs. C-scan), applying different
evaluation techniques (standard vs. test time augmentation (TTA)) and resampling imbalance strategy. Note that the
numbers report “mean ± std” values.

Data Type Evaluation BAC Sensitivity Specificity PPV NPV

B-scan Standard 0.8806 ± 0.0748 0.9635 ± 0.0148 0.7978 ± 0.1431 0.9268 ± 0.0498 0.8914 ± 0.0415
TTA 0.8895 ± 0.0792 0.8094 ± 0.1524 0.8094 ± 0.1524 0.9305 ± 0.0526 0.9093 ± 0.0400

C-scan Standard 0.8857 ± 0.1143 0.7893 ± 0.2180 0.7893 ± 0.2180 0.9221 ± 0.0735 0.9432 ± 0.0687
TTA 0.8843 ± 0.1068 0.7865 ± 0.2050 0.7865 ± 0.2050 0.9212 ± 0.0693 0.9472 ± 0.0614

4. Discussion and Conclusions

On analyzing the results, in general terms and considering the mean results reported in
Table 2, when using the standard evaluation technique, the prediction over C-scan volumes
was slightly better than the prediction over individual B-scan images. This impression is
confirmed by the SRD analysis (Figure A1), where smaller values were obtained for C-scan
images analysis. This result makes sense, since when evaluating the lesion volumetrically
(C-scan) considering the mean prediction of all the B-scan images contained in the C-scan,
there was less probability of a bad prediction. If the volume contains some individual
B-scans with poor information representing the class sample, the (expected) bad predictions
do not have great influence on the final diagnosis. In any case, the small differences on the
prediction metrics suggest the high quality of the database used in this study, as shown in
the detailed results for each fold provided in Table A2.

It can also be observed that the TTA evaluation technique slightly benefitted the prediction
over individual B-scan images in terms of sensitivity and specificity, but not the C-scan volume
prediction. However, these results make sense for two reasons: the data preparation strategy
and the volumetric evaluation of the lesion. On the one hand, due to the nature of the images,
no geometrical transformations were applied for data augmentation, as described in the data
preparation section, but ROIs at different location of the image were extracted. Depending
on the location of the extracted ROIs, the clinical features can be more or less representative
of the lesion, affecting the corresponding prediction. When TTA was applied, different ROIs
from the B-scan were extracted, allowing analysis of the overall sample in width, and hence a
better prediction was obtained. This is particularly beneficial in the case of large wide B-scan
images, as it allows analyzing the different parts of the tissue/lesion in detail. Considering
this, and although no improvement was observed on the C-scan evaluation, the TTA strategy
was preferred during the evaluation, since in this way, the intrinsic clinical variability of the
lesions was captured and hence the model prediction was more robust.
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Interpretation of new imaging techniques, such as OCT, can be complicated at the begin-
ning and prevent their adoption in clinical practice. However, advanced image processing
techniques, such as deep learning, can be used to facilitate automatic image analysis or
diagnosis and the development of optical biopsy. A previous work [46] proposed using a
pattern recognition network that requires prior manual annotation of the dataset and diagno-
sis depends on whether the expected pattern is found on the image. Alternatively, this work
proposes using a classification strategy, which can help in the identification of subtle clinical
characteristics on the images and is not biased by dataset annotations. This work investigates
the application of an Xception deep learning model for the automatic classification of colon
polyps from murine (rat) samples acquired with OCT imaging. The developed database is
accessible upon request and is part of a bigger database in the process of being published. A
strategy for processing B-scan images and extracting regions of interest was proposed as a
data augmentation strategy. Test time augmentation strategy implemented with the aim of
improving model prediction was evaluated. In addition, this work also aims to compare the
differences in the diagnosis capacity of the proposed method when evaluated using B-scan
images and C-scan volumes, and for this purpose different clinical metrics were compared.
The trained model was evaluated 6 times using different training, validation, and testing sets
to provide an unbiased diagnosis of the results. In this sense, we got a model with mean 0.9695
(±0.0141) sensitivity and mean 0.8094 (±0.1524) specificity when diagnosis was performed
over individual B-scans, and mean 0.9821 (±0.0197) sensitivity and mean 0.7865 (±0.205)
specificity when diagnosis was performed in the whole C-scan volume.

Considering the future application of a deep learning method to assist clinical di-
agnosis with OCT, and in view of the results of this work, successful diagnosis can be
achieved both on B-scan images and C-scan volumes. The evaluation of the lesion over a
C-scan volume was preferred over the evaluation of an individual B-scan image, so the
prediction could be more robust. However, this will not be possible most of the time in
the daily clinical routine, for example during patient colonoscopy examination, where
in vivo real-time information is necessary for diagnosis and in-situ treatment decision. In
this sense, clinical procedures based on the accumulative predictions of various B-scan
images could be defined to facilitate clinicians’ decision-making during examination. The
promising results with the proposed approach suggest that the implemented deep learning
based method can identify the clinical features reported in previous clinical studies on the
OCT images, and more importantly, that the amount of data and features present on the
images database are enough to allow automatic classification. These results are part of
ongoing work that will be further extended; however, it has been demonstrated that deep
learning-based strategies seem to be the path to achieve the “optical biopsy” paradigm.
Raw interpretation of new imaging modalities is difficult for clinicians but assisted by an
image analysis method, the interpretation can be eased and the reliable diagnosis sugges-
tion can facilitate the adoption of the technology. Consequently, the CADx market can
benefit from this progress in the short term as the latest market forecast studies suggest.

This work will be further extended and tested with a larger and more balanced version
of the murine dataset collected. More sophisticated models accepting larger image size will
be tested to check whether classification is improved. Optical properties of the different
lesions will be studied in detail with the aim of finding scattering patterns for each type of
lesion. OCT volumetric (C-scan) information will be also studied in further detail to make
the most of it analyzing both the cross sectional and en-face views.
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Appendix A

Table A1. Comparison of anatomical differences of human and murine colon (adapted from reference [61]).

Feature Human Rats

Anatomy of the large intestine compared macroscopically

Cecum to rectum ~100–150 cm ~25 cm
Taenia coli and haustra Present None; smooth serosa; may have fecal pellets

Appendix Present, vermiform, ~9 cm Absent
Functional cecum Absent Present; fermentation, vitamins K and B

Proximal/ascending/right Colon from ileocecal valve to the hepatic flexure Transverse folds in the mucosa, from cecum to mid colon;
Rat: folds are visible through serosa

Mid/transverse Connects the hepatic to the splenic flexure Very short; lumen narrows; no mucosal folds

Distal/descending/left
Splenic flexure to left lower quadrant; S-shaped sigmoid

colon extends from descending colon to rectosigmoid
junction; sigmoid colon may be redundant

Fecal pellets may be seen

Rectum

12–15 cm curved; proximal two-thirds of rectum has a
mesothelial covering within the peritoneal cavity,

whereas the distal third of rectum is extraperitoneal,
lying within the deep pelvis, surrounded by adventitia,

fascia, and fat

Indistinct from distal colon; Rat: ~50–80 mm, prolapse
is rare

Large intestine anatomy compared at histological level

Mucosa Transverse folds at all regions
Mucosal folds vary by region. Cecum and proximal

colon: transverse; mid colon: flat with no folds; distal
colon and rectum: longitudinal

Absorptive colonocytes Similar to rodent Present
Mucous/goblet cells Similar to rodent Present
Enteroendocrine cells Similar to rodent Present

Paneth cells Cecum and appendix Absent
Microfold (M) cells Similar to rodent Present

Lamina propria Similar to rodent Lymphocytes, plasma cells, macrophages, eosinophils,
mast cells

Muscularis mucosae Variable thickness; traversed by lymphoid follicles;
poorly developed in appendix Thin

Submucosa Contains adipose tissue, arterioles, venules,
lymphatics, and Meissner’s plexus Rodents thinner than humans

Muscular tunics Auerbach’s plexus between the two muscle bands Muscular tunics thicken distally
Proximal colon Transverse folds Transverse mucosal folds

Transverse colon Transverse folds Flat mucosa
Distal colon Transverse folds Longitudinal mucosal folds

Rectum Transverse folds Indistinguishable from distal colon
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Appendix B

Table A2. Detail of the results of each fold for the different imaging modalities (B-scan vs. C-scans).

Fold Data Type Evaluation BAC Sensitivity Specificity PPV NPV

1

B-scan Standard 0.8967 0.9472 0.8462 0.9207 0.8948
TTA 0.9024 0.9553 0.8494 0.9229 0.9098

C-scan Standard 0.8736 0.9615 0.7857 0.8929 0.9167
TTA 0.8736 0.9615 0.7857 0.8929 0.9167

2

B-scan Standard 0.9000 0.9583 0.8417 0.9362 0.8928
TTA 0.9060 0.9616 0.8505 0.9398 0.9012

C-scan Standard 0.8988 0.9643 0.8333 0.9310 0.9091
TTA 0.8988 0.9643 0.8333 0.9310 0.9091

3

B-scan Standard 0.7568 0.9549 0.5588 0.8455 0.8305
TTA 0.7590 0.9585 0.5594 0.8461 0.8421

C-scan Standard 0.6917 0.9667 0.4167 0.8056 0.8333
TTA 0.7333 0.9667 0.5000 0.8286 0.8571

4

B-scan Standard 0.8311 0.9657 0.6966 0.9037 0.8732
TTA 0.8398 0.9790 0.7007 0.9048 0.9189

C-scan Standard 0.8500 1.0000 0.7000 0.9032 1.0000
TTA 0.8000 1.0000 0.6000 0.8750 1.0000

5

B-scan Standard 0.9437 0.9642 0.9233 0.9733 0.8988
TTA 0.9587 0.9705 0.9468 0.9815 0.9172

C-scan Standard 1.0000 1.0000 1.0000 1.0000 1.0000
TTA 1.0000 1.0000 1.0000 1.0000 1.0000

6

B-scan Standard 0.9553 0.9905 0.9201 0.9812 0.9584
TTA 0.9709 0.9922 0.9495 0.9881 0.9666

C-scan Standard 1.0000 1.0000 1.0000 1.0000 1.0000
TTA 1.0000 1.0000 1.0000 1.0000 1.0000
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