244 research outputs found

    Ionization heating in rare-gas clusters under intense XUV laser pulses

    Full text link
    The interaction of intense extreme ultraviolet (XUV) laser pulses (λ=32 nm\lambda=32\rm\,nm, I=1011−14I=10^{11-14}\,W/cm2^2) with small rare-gas clusters (Ar147_{147}) is studied by quasi-classical molecular dynamics simulations. Our analysis supports a very general picture of the charging and heating dynamics in finite samples under short-wavelength radiation that is of relevance for several applications of free-electron lasers. First, up to a certain photon flux, ionization proceeds as a series of direct photoemission events producing a jellium-like cluster potential and a characteristic plateau in the photoelectron spectrum as observed in [Bostedt {\it et al.}, Phys. Rev. Lett. {\bf 100}, 013401 (2008)]. Second, beyond the onset of photoelectron trapping, nanoplasma formation leads to evaporative electron emission with a characteristic thermal tail in the electron spectrum. A detailed analysis of this transition is presented. Third, in contrast to the behavior in the infrared or low vacuum ultraviolet range, the nanoplasma energy capture proceeds via {\it ionization heating}, i.e., inner photoionization of localized electrons, whereas collisional heating of conduction electrons is negligible up to high laser intensities. A direct consequence of the latter is a surprising evolution of the mean energy of emitted electrons as function of laser intensity.Comment: figure problems resolve

    Tracing Electron-Ion Recombination in Nanoplasmas Produced by Extreme- Ultraviolet Irradiation of Rare-Gas Clusters

    Get PDF
    We investigate electron-ion recombination in nanoplasmas produced by the ionization of rare-gas clusters with intense femtosecond extreme-ultraviolet (XUV) pulses. The relaxation dynamics following XUV irradiation is studied using time-delayed 790-nm pulses, revealing the generation of a large number of excited atoms resulting from electron-ion recombination. In medium-sized Ar-Xe clusters, these atoms are preferentially created in the Xe core within 10 ps after the cluster ionization. The ionization of excited atoms serves as a sensitive probe for monitoring the cluster expansion dynamics up to the ns time scale

    Rare-Gas Clusters in Intense Extreme-Ultraviolet Pulses from a High-Order Harmonic Source

    Get PDF
    We report evidence for two previously unidentified effects in the ionization of rare-gas clusters by intense extreme-ultraviolet pulses. First, electron spectra indicate multistep photoemission with increasing isotropy for larger clusters due to electron-atom collisions. Second, very slow (meV) electrons are interpreted as the first experimental evidence for Rydberg-like atomic state formation in the nanoplasma expansion. Only small fractions of Xe2+ ions were found, in sharp contrast to previous results recorded under comparable conditions [Murphy et al., Phys. Rev. Lett. 101, 203401 (2008)]
    • 

    corecore