13 research outputs found

    Proteome Mapping of Adult Zebrafish Marrow Neutrophils Reveals Partial Cross Species Conservation to Human Peripheral Neutrophils

    Get PDF
    Neutrophil granulocytes are pivotal cells within the first line of host defense of the innate immune system. In this study, we have used a gel-based LC-MS/MS approach to explore the proteome of primary marrow neutrophils from adult zebrafish. The identified proteins originated from all major cellular compartments. Gene ontology analysis revealed significant association of proteins with different immune-related network and pathway maps. 75% of proteins identified in neutrophils were identified in neutrophils only when compared to neutrophil-free brain tissue. Moreover, cross-species comparison with human peripheral blood neutrophils showed partial conservation of immune-related proteins between human and zebrafish. This study provides the first zebrafish neutrophil proteome and may serve as a valuable resource for an understanding of neutrophil biology and innate immunity

    Phosphoregulation of the Titin-cap Protein Telethonin in Cardiac Myocytes

    Get PDF
    Telethonin (also known as titin-cap or t-cap) is a muscle-specific protein whose mutation is associated with cardiac and skeletal myopathies through unknown mechanisms. Our previous work identified cardiac telethonin as an interaction partner for the protein kinase D catalytic domain. In this study, kinase assays used in conjunction with MS and site-directed mutagenesis confirmed telethonin as a substrate for protein kinase D and Ca(2+)/calmodulin-dependent kinase II in vitro and identified Ser-157 and Ser-161 as the phosphorylation sites. Phosphate affinity electrophoresis and MS revealed endogenous telethonin to exist in a constitutively bis-phosphorylated form in isolated adult rat ventricular myocytes and in mouse and rat ventricular myocardium. Following heterologous expression in myocytes by adenoviral gene transfer, wild-type telethonin became bis-phosphorylated, whereas S157A/S161A telethonin remained non-phosphorylated. Nevertheless, both proteins localized predominantly to the sarcomeric Z-disc, where they partially replaced endogenous telethonin. Such partial replacement with S157A/S161A telethonin disrupted transverse tubule organization and prolonged the time to peak of the intracellular Ca(2+) transient and increased its variance. These data reveal, for the first time, that cardiac telethonin is constitutively bis-phosphorylated and suggest that such phosphorylation is critical for normal telethonin function, which may include maintenance of transverse tubule organization and intracellular Ca(2+) transients

    Comprehensive phosphoproteomics of heart development identifies Mic85 as a new component of the mitochondrial MICOS complex

    No full text
    Dissecting the complexities of mammalian heart development and regenerative capacity require thorough understanding of the underlying molecular mechanisms through the expression pattern of proteins and post-translational modifications. To obtain insights intoactivated signaling pathways that control the cellular phenotype during postnatal heart development, we generated a comprehensive map of phosphorylation sites. In total we identified 21,261 phosphorylation sites and 8985 proteins in developing mouse hearts by mass spectrometry. The in-vivo SILAC (stable isotope labeling of amino acids in cell culture) approach allowed robust quantification of phosphorylation sites and proteins, which are regulated during heart development. We found several activated pathways involved in cell cycle regulation and detected numerous kinases and transcription factors to be regulated on protein and phosphopeptide level. Most strikingly, we identified a novel mitochondrial protein, known previously as Perm1, as a highly phosphorylated factor regulated during heart development. We renamed Perm1 as MICOS complex subunit Mic85 since it shows robust physical interaction with MICOS complex subunits, including Mitofilin (Mic60), Chchd3 (Mic19), Chchd6 (Mic25) and the outer membrane protein Samm50. Moreover, Mic85 is localized to the mitochondrial inner membrane facing the intermembrane space and the dynamics of Mic85 protein expression is regulated by the ubiquitin-proteasomal system through phosphorylation of casein kinase 2 on its PEST motif. Silencing of Mic85 in cultured neonatal cardiomyocytes impairs mitochondrial morphology and compromises oxidative capacity. Our findings support a clear role for Mic85 in the maintenance of mitochondrial architecture and in its contribution to enhanced energetics during developing and adult mouse cardiomyocytes. The transgenic Mic85 knockout mouse generated with a GFP knock-in will support future in vivo investigations on the integrity of mitochondria and the function of Mic85 in cardiac development

    Most abundant proteins in zebrafish neutrophils.

    No full text
    <p>List of the 20 most abundant neutrophil-specific proteins identified in zebrafish marrow neutrophils. Protein abundance is shown as ion intensity. Number of peptides depicts the number of individual peptides identified for each protein.</p

    Phagocytosis network process analysis of zebrafish neutrophil proteins.

    No full text
    <p>Phagocytosis process network identified from the neutrophil proteome dataset. 18 neutrophil proteins were found associated in this pathway. Proteins represented with a red circle represent the proteins identified in this study.</p

    Complement pathway map analysis of zebrafish neutrophil proteins.

    No full text
    <p>Alternative complement pathway map identified from the zebrafish neutrophil proteome. 10 different zebrafish neutrophil proteins were found associated with the alternative complement pathway. Proteins with red color thermometer bar represent the zebrafish neutrophil proteins identified in this study.</p

    Zebrafish brain and neutrophil proteome comparison.

    No full text
    <p>Venn diagram comparing zebrafish whole brain and zebrafish neutrophil proteome data sets.</p

    Comparison of human and zebrafish neutrophil proteomes based on subcellular localization (a) and on association with biological process (b).

    No full text
    <p>Comparison of human and zebrafish neutrophil proteomes based on subcellular localization (a) and on association with biological process (b).</p

    Dynamic changes in the mouse skeletal muscle proteome during denervation-induced atrophy

    No full text
    Loss of neuronal stimulation enhances protein breakdown and reduces protein synthesis, causing rapid loss of muscle mass. To elucidate the pathophysiological adaptations that occur in atrophying muscles, we used stable isotope labelling and mass spectrometry to quantify protein expression changes accurately during denervation-induced atrophy after sciatic nerve section in the mouse gastrocnemius muscle. Additionally, mice were fed a stable isotope labelling of amino acids in cell culture (SILAC) diet containing C-13(6)-lysine for 4, 7 or 11 days to calculate relative levels of protein synthesis in denervated and control muscles. Ubiquitin remnant peptides (K-epsilon-GG) were profiled by immunoaffinity enrichment to identify potential substrates of the ubiquitin-proteasomal pathway. Of the 4279 skeletal muscle proteins quantified, 850 were differentially expressed significantly within 2 weeks after denervation compared with control muscles. Moreover, pulse labelling identified Lys6 incorporation in 4786 proteins, of which 43 had differential Lys6 incorporation between control and denervated muscle. Enrichment of diglycine remnants identified 2100 endogenous ubiquitination sites and revealed a metabolic and myofibrillar protein diglycine signature, including myosin heavy chains, myomesins and titin, during denervation. Comparative analysis of these proteomic data sets with known atrogenes using a random forest approach identified 92 proteins subject to atrogene-like regulation that have not previously been associated directly with denervation-induced atrophy. Comparison of protein synthesis and proteomic data indicated that upregulation of specific proteins in response to denervation is mainly achieved by protein stabilization. This study provides the first integrated analysis of protein expression, synthesis and ubiquitin signatures during muscular atrophy in a living animal

    PERM1 interacts with the MICOS-MIB complex to connect the mitochondria and sarcolemma via ankyrin B

    No full text
    Skeletal muscle subsarcolemmal mitochondria (SSM) and intermyofibrillar mitochondria subpopulations have distinct metabolic activity and sensitivity, though the mechanisms that localize SSM to peripheral areas of muscle fibers are poorly understood. A protein interaction study and complexome profiling identifies PERM1 interacts with the MICOS-MIB complex. Ablation of Perm1 in mice reduces muscle force, decreases mitochondrial membrane potential and complex I activity, and reduces the numbers of SSM in skeletal muscle. We demonstrate PERM1 interacts with the intracellular adaptor protein ankyrin B (ANKB) that connects the cytoskeleton to the plasma membrane. Moreover, we identify a C-terminal transmembrane helix that anchors PERM1 into the outer mitochondrial membrane. We conclude PERM1 functions in the MICOS-MIB complex and acts as an adapter to connect the mitochondria with the sarcolemma via ANKB. Mitochondria in skeletal muscle have distinct localization and properties through unclear mechanisms. Here, the authors use complexome profiling and immunoprecipitations to identify PERM1 as a MICOS-MIB complex interactor that also binds ankyrin B, suggesting PERM1 directs the mitochondria to the membrane
    corecore