522 research outputs found
Morphological and electrophysiological properties of pyramidal-like neurons in the stratum oriens of Cornu ammonis 1 and Cornu ammonis 2 area of Proechimys
AbstractProechimys (Rodentia: Echimyidae) is a neotropical rodent of the Amazon region that has been successfully colonized in the laboratory and used for experimental medicine. Preliminary studies indicated that Proechimys (casiragua) rodents express an atypical resistance to developing a chronic epileptic condition in common models of temporal lobe epilepsy. Moreover, previous investigation of our laboratory described a remarkably different Proechimy's cytoarchitecture organization of the hippocampal CA2 subfield. In the present study, we investigated the intrinsic neuronal properties and morphological characteristics of the Proechimys's hippocampal pyramidal neurons of the CA1 and CA2 areas. A comparative approach was performed using neurons recorded in Wistar rats. A striking finding in Proechimys rodents was the presence of large pyramidal-like neurons throughout the stratum oriens from CA2 to CA1 area. In order to confirm such distinctive feature of the Proechimys's hippocampus, we performed Nissl staining and immunohistochemistry for neurofilament protein SM311. CA2 pyramidal neurons in the stratum pyramidale of Proechimys exhibited a significantly higher input resistance and lower time constant when compared to corresponding cell groups in the same area of the Wistar rat's. This newly identified population of pyramidal-shaped neurons in stratum oriens of Proechimys exhibited distinct electrophysiological and morphological properties. This included larger capacitance, lower input resistance, larger rheobase, long latency to first action potential and slower firing frequency. In addition, the apical dendrites of these neurons were oriented in parallel to apical dendrites of regular pyramidal neurons in stratum pyramidale. Moreover, these neurons were immunoreactive to SM311 as the majority of the neurons of the pyramidal layer. The functional role of these hippocampal neurons of the rodent Proechimys deserves further investigation
Effect of panretinal photocoagulation on the peripapillary retinal nerve fiber layer in diabetic retinopathy patients
OBJECTIVES: To determine the effect of panretinal photocoagulation (PRP) on the peripapillary retinal nerve fiber layer (RNFL) in nonglaucomatous patients with proliferative diabetic retinopathy (PDR). METHODS: This is a prospective, single center, observational study. Thirty-eight eyes of 26 diabetic patients underwent PRP for proliferative diabetic retinopathy. Peripapillary RNFL thickness was measured using scanning laser polarimetry (SLP) with variable corneal compensation (GDx VCC; by Carl Zeiss Meditec, Dublin, CA) and spectral-domain optical coherence tomography (OCT) (Heidelberg Spectralis, Carlsbad, USA) at baseline and 12 months after PRP was performed. RESULTS: Thirty-eight eyes of 26 patients (15 female) with a mean age of 53.7 years (range 26 to 74 years) were recruited. No significant difference was found among all RNFL thickness parameters tested by GDx VCC software (p=0.952, 0.464 and 0.541 for temporal-superior-nasal-inferior-temporal (TSNIT) average, superior average, inferior average, respectively). The nerve fiber indicator (NFI) had a nonsignificant increase (p=0.354). The OCT results showed that the average RNFL thickness (360o measurement) decreased nonsignificantly from 97.2 mm to 96.0 mm at 1 year post-PRP (p=0.469). There was no significant difference when separately analyzing all the peripapillary sectors (nasal superior, temporal superior, temporal, temporal inferior, nasal inferior and nasal thickness). CONCLUSION: Our results suggest that PRP, as performed in our study, does not cause significant changes in peripapillary RNFL in diabetic PDR patients after one year of follow-up
How does the substrate affect the Raman and excited state spectra of a carbon nanotube?
We study the optical properties of a single, semiconducting single-walled
carbon nanotube (CNT) that is partially suspended across a trench and partially
supported by a SiO2-substrate. By tuning the laser excitation energy across the
E33 excitonic resonance of the suspended CNT segment, the scattering
intensities of the principal Raman transitions, the radial breathing mode
(RBM), the G-mode and the D-mode show strong resonance enhancement of up to
three orders of magnitude. In the supported part of the CNT, despite a loss of
Raman scattering intensity of up to two orders of magnitude, we recover the E33
excitonic resonance suffering a substrate-induced red shift of 50 meV. The peak
intensity ratio between G-band and D-band is highly sensitive to the presence
of the substrate and varies by one order of magnitude, demonstrating the much
higher defect density in the supported CNT segments. By comparing the E33
resonance spectra measured by Raman excitation spectroscopy and
photoluminescence (PL) excitation spectroscopy in the suspended CNT segment, we
observe that the peak energy in the PL excitation spectrum is red-shifted by 40
meV. This shift is associated with the energy difference between the localized
exciton dominating the PL excitation spectrum and the free exciton giving rise
to the Raman excitation spectrum. High-resolution Raman spectra reveal
substrate-induced symmetry breaking, as evidenced by the appearance of
additional peaks in the strongly broadened Raman G band. Laser-induced line
shifts of RBM and G band measured on the suspended CNT segment are both linear
as a function of the laser excitation power. Stokes/anti-Stokes measurements,
however, reveal an increase of the G phonon population while the RBM phonon
population is rather independent of the laser excitation power.Comment: Revised manuscript, 20 pages, 8 figure
Preparation and ferroelectric properties of (124)-oriented SrBi4Ti4O15 ferroelectric thin film on (110)-oriented LaNiO3 electrode
A (124)-oriented SrBi4Ti4O15 (SBTi) ferroelectric thin film with high volume
fraction of {\alpha}SBTi(124)=97% was obtained using a metal organic
decomposition process on SiO2/Si substrate coated by (110)-oriented LaNiO3
(LNO) thin film. The remanent polarization and coercive field for
(124)-oriented SBTi film are 12.1 {\mu}C/cm2 and 74 kV/cm, respectively. No
evident fatigue of (124)-oriented SBTi thin film can be observed after
1{\times}10e9 switching cycles. Besides, the (124)-oriented SBTi film can be
uniformly polarized over large areas using a piezoelectric-mode atomic force
microscope. Considering that the annealing temperature was 650{\deg}C and the
thickness of each deposited layer was merely 30 nm, a long-range epitaxial
relationship between SBTi(124) and LNO(110) facets was proposed. The epitaxial
relationship was demonstrated based on the crystal structures of SBTi and LNO.Comment: 11 pages, 4 figures, published in Journal of Materials Science:
Materials in Electronics (JMSE), 19 (2008), 1031-103
A new ghost cell/level set method for moving boundary problems:application to tumor growth
In this paper, we present a ghost cell/level set method for the evolution of interfaces whose normal velocity depend upon the solutions of linear and nonlinear quasi-steady reaction-diffusion equations with curvature-dependent boundary conditions. Our technique includes a ghost cell method that accurately discretizes normal derivative jump boundary conditions without smearing jumps in the tangential derivative; a new iterative method for solving linear and nonlinear quasi-steady reaction-diffusion equations; an adaptive discretization to compute the curvature and normal vectors; and a new discrete approximation to the Heaviside function. We present numerical examples that demonstrate better than 1.5-order convergence for problems where traditional ghost cell methods either fail to converge or attain at best sub-linear accuracy. We apply our techniques to a model of tumor growth in complex, heterogeneous tissues that consists of a nonlinear nutrient equation and a pressure equation with geometry-dependent jump boundary conditions. We simulate the growth of glioblastoma (an aggressive brain tumor) into a large, 1 cm square of brain tissue that includes heterogeneous nutrient delivery and varied biomechanical characteristics (white matter, gray matter, cerebrospinal fluid, and bone), and we observe growth morphologies that are highly dependent upon the variations of the tissue characteristics—an effect observed in real tumor growth
Photoinduced antibacterial activity of the essential oils from Eugenia brasiliensis lam and Piper mosenii C. DC. by blue led light
The objective of this work was to evaluate the phytochemical composition and the antibacterial and antibiotic-modulating activities of the essential oils of Eugenia brasiliensis Lam (OEEb) and Piper mosenii C. DC (OEPm) singly or in association with blue LED (Light-emitting diode) light. The antibacterial and antibiotic-modulatory activities of the essential oils on the activity of aminoglycosides were evaluated to determine the minimum inhibitory concentration (MIC, \u3bcg/mL) in the presence or absence of exposure to blue LED light. The chemical analysis showed \u3b1-pinene and bicyclogermacrene as major constituents of OEPm, whereas \u3b1-muurolol was the main compound of OEEb. Both OEEb and OEPm showed MIC 65 512 \u3bcg/mL against the strains under study. However, the association of these oils with the blue LED light enhanced the action of the aminoglycosides amikacin and gentamicin. In conclusion, the association of aminoglycosides with the blue LED light and essential oils was effective against resistant bacteria
- …