606 research outputs found

    Influence of surgical arch reconstruction methods on single ventricle workload in the Norwood procedure

    Get PDF
    ObjectiveThe study objective was to evaluate various types of Norwood arch reconstruction methods and to show the factors that affect the cardiac workload of the single ventricle. The Norwood procedure is one of the most challenging congenital heart surgeries. Several aortic arch reconstruction techniques have been reported to avoid recoarctation, ensure coronary perfusion, and improve long-term outcomes. Inside the arch, complicated turbulent flow is generated; however, little is known about the cause of the disadvantageous inefficient flow and the surgical techniques to avoid it.MethodsWe created patient-specific computational hemodynamic models of 9 patients who underwent different types of arch reconstruction methods. Four patients had aortic atresia, and 5 patients had aortic stenosis. Flow profiles were defined by echocardiography data corrected with body surface area. Turbulent pulsatile flow was analyzed with the finite volume method. Flow energy loss was calculated to estimate cardiac workload, and wall shear stress was calculated to estimate vessel wall stiffness increase.ResultsRecoarctation and acute arch angles increased wall shear stress and energy loss. In the patients with aortic atresia, a longitudinal incision toward the descending aorta was effective in creating a smooth arch angle. In the patients with aortic stenosis, arch repair with the Damus-Kaye-Stansel procedure in a single anastomotic site was effective in creating sufficient anastomosis space and a smooth arch angle.ConclusionsCreation of a large anastomotic space and a smooth aortic arch angle reduced wall shear stress and energy loss, and should improve long-term cardiac performance after the Norwood procedure

    Urinary active transforming growth factor ß in feline chronic kidney disease

    Get PDF
    The cytokine transforming growth factor beta 1 (TGF-β1) has been widely implicated in the development and progression of renal fibrosis in chronic kidney disease (CKD) in humans and in experimental models. The aims of this study were to assess the association between urinary active TGF-β1 and (a) development of CKD in a cross-sectional study, (b) deterioration of renal function over 1 year in a longitudinal study, and (c) renal histopathological parameters in cats. A human active TGF-β1 ELISA was validated for use in feline urine. Cross-sectional analysis revealed no significant difference in urinary active TGF-β1:creatinine ratio (aTGF-β1:UCr) between groups with differing renal function. Longitudinally, non-azotaemic cats that developed CKD demonstrated a significant (P = 0.028) increase in aTGF-β1:UCr approximately 6 months before the development of azotaemia, which remained elevated (P = 0.046) at diagnosis (approximately 12 months prior, 8.4 pg/mg; approximately 6 months prior, 22.2 pg/mg; at CKD diagnosis, 24.6 pg/mg). In the histopathology study, aTGF-β1:UCr was significantly higher in cats with moderate (P = 0.02) and diffuse (P = 0.005) renal fibrosis than in cats without fibrosis. Cats with moderate renal inflammation had significantly higher urinary active aTGF-β1 concentrations than cats with mild (P = 0.035) or no inflammatory change (P = 0.004). The parameter aTGF-β1:UCr was independently associated with Log urine protein:creatinine ratio in a multivariable analysis of clinicopathological parameters and interstitial fibrosis score in a multivariable analysis of histopathological features. These results suggest that urinary aTGF-β1 reflects the severity of renal pathology. Increases in urinary aTGF-β1 followed longitudinally in individual cats may indicate the development of CKD

    Distribution of a brain-specific extracellular matrix protein in developing and adult zebrafish

    Get PDF
    A monoclonal antibody (IgG) that recognizes a 53-kDa zebrafishnext brain protein was isolated and used to characterize the distribution of this protein in zebrafish.next (1) The antigen was found only in the brain and not in any other tissues such as muscle, dermis and cartilage. Within the brain, the antibody recognized extracellular matrix (ECM) outside neuronal cells. (2) Digestion by hyaluronidase released the antigen from brain tissue, and the monoclonal antibody staining was also decreased by the digestion by hyaluronidase. (3) The pattern of antigen distribution is not perineuronal, as the density of the antigen at the periphery of the cells was practically identical to that of the empty intercellular spaces. Therefore, this monoclonal antibody does not recognize the perineuronal glycocortex. (4) The antigen is distributed only in limited areas of the brain, namely in the periphery of the forebrain, the hypothalamus, the optic tectum, the interpeduncular nucleus, the cerebellum and the ventricular rim of the medulla. In the optic tectum, the antibody strongly stained the most superficial layer, and in the cerebellum, it stained the molecular but not the granular layer. These patterns of distribution are very different from those of other typical brain ECM proteins and suggest that this protein may play quite distinct roles in brain development and maintenance.</p

    Spintronics: Fundamentals and applications

    Get PDF
    Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems. This article reviews the current status of this subject, including both recent advances and well-established results. The primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport in semiconductors and metals. Spin transport differs from charge transport in that spin is a nonconserved quantity in solids due to spin-orbit and hyperfine coupling. The authors discuss in detail spin decoherence mechanisms in metals and semiconductors. Various theories of spin injection and spin-polarized transport are applied to hybrid structures relevant to spin-based devices and fundamental studies of materials properties. Experimental work is reviewed with the emphasis on projected applications, in which external electric and magnetic fields and illumination by light will be used to control spin and charge dynamics to create new functionalities not feasible or ineffective with conventional electronics.Comment: invited review, 36 figures, 900+ references; minor stylistic changes from the published versio

    f0(980) production in inelastic pp collisions at s = 5.02 TeV

    Get PDF
    The measurement of the production of f0(980) in inelastic pp collisions at sqrt(s) = 5.02 TeV is presented. This is the first reported measurement of inclusive f0(980) yield at LHC energies. The production is measured at midrapidity, |y| pi+pi- hadronic decay channel using the ALICE detector. The pT-differential yields are compared to those of pions, protons and ϕ mesons as well as to predictions from the HERWIG 7.2 QCD-inspired Monte Carlo event generator and calculations from a coalescence model that uses the AMPT model as an input. The ratio of the pT-integrated yield of f0(980) relative to pions is compared to measurements in e+e- and pp collisions at lower energies and predictions from statistical hadronisation models and HERWIG 7.2. A mild collision energy dependence of the f0(980) to pion production is observed in pp collisions from SPS to LHC energies. All considered models underpredict the pT-integrated 2f0(980)/(pi+ + pi-) ratio. The prediction from the canonical statistical hadronisation model assuming a zero total strangeness content of f0(980) is consistent with the data within 1.9σ and is the closest to the data. The results provide an essential reference for future measurements of the particle yield and nuclear modification in p–Pb and Pb–Pb collisions, which have been proposed to be instrumental to probe the elusive nature and quark composition of the f0(980) scalar meson
    corecore