100 research outputs found

    The application of predictive modelling for determining bio-environmental factors affecting the distribution of blackflies (Diptera: Simuliidae) in the Gilgel Gibe watershed in Southwest Ethiopia

    Get PDF
    Blackflies are important macroinvertebrate groups from a public health as well as ecological point of view. Determining the biological and environmental factors favouring or inhibiting the existence of blackflies could facilitate biomonitoring of rivers as well as control of disease vectors. The combined use of different predictive modelling techniques is known to improve identification of presence/absence and abundance of taxa in a given habitat. This approach enables better identification of the suitable habitat conditions or environmental constraints of a given taxon. Simuliidae larvae are important biological indicators as they are abundant in tropical aquatic ecosystems. Some of the blackfly groups are also important disease vectors in poor tropical countries. Our investigations aim to establish a combination of models able to identify the environmental factors and macroinvertebrate organisms that are favourable or inhibiting blackfly larvae existence in aquatic ecosystems. The models developed using macroinvertebrate predictors showed better performance than those based on environmental predictors. The identified environmental and macroinvertebrate parameters can be used to determine the distribution of blackflies, which in turn can help control river blindness in endemic tropical places. Through a combination of modelling techniques, a reliable method has been developed that explains environmental and biological relationships with the target organism, and, thus, can serve as a decision support tool for ecological management strategies

    Control of Pierce's Disease by Phage

    Get PDF
    Pierce's Disease (PD) of grapevines, caused by Xylella fastidiosa subsp. fastidiosa (Xf), is a limiting factor in the cultivation of grapevines in the US. There are presently no effective control methods to prevent or treat PD. The therapeutic and prophylactic efficacy of a phage cocktail composed of four virulent (lytic) phages was evaluated for control of PD. Xf levels in grapevines were significantly reduced in therapeutically or prophylactically treated grapevines. PD symptoms ceased to progress one week post-therapeutic treatment and symptoms were not observed in prophylactically treated grapevines. Cocktail phage levels increased in grapevines in the presence of the host. No in planta phage-resistant Xf isolates were obtained. Moreover, Xf mutants selected for phage resistance in vitro did not cause PD symptoms. Our results indicate that phages have great potential for biocontrol of PD and other economically important diseases caused by Xylella

    Occurrence of Grapevine Leafroll-Associated Virus Complex in Napa Valley

    Get PDF
    Grapevine leafroll disease (GLD) is caused by a complex of several virus species (grapevine leafroll-associated viruses, GLRaV) in the family Closteroviridae. Because of its increasing importance, it is critical to determine which species of GLRaV is predominant in each region where this disease is occurring. A structured sampling design, utilizing a combination of RT-PCR based testing and sequencing methods, was used to survey GLRaVs in Napa Valley (California, USA) vineyards (n = 36). Of the 216 samples tested for GLRaV-1, -2, -3, -4, -5, and -9, 62% (n = 134) were GLRaV positive. Of the positives, 81% (n = 109) were single infections with GLRaV-3, followed by GLRaV-2 (4%, n = 5), while the remaining samples (15%, n = 20) were mixed infections of GLRaV-3 with GLRaV-1, 2, 4, or 9. Additionally, 468 samples were tested for genetic variants of GLRaV-3, and of the 65% (n = 306) of samples positive for GLRaV-3, 22% were infected with multiple GLRaV-3 variants. Phylogenetic analysis utilizing sequence data from the single infection GLRaV-3 samples produced seven well-supported GLRaV-3 variants, of which three represented 71% of all GLRaV-3 positive samples in Napa Valley. Furthermore, two novel variants, which grouped with a divergent isolate from New Zealand (NZ-1), were identified, and these variants comprised 6% of all positive GLRaV-3 samples. Spatial analyses showed that GLRaV-3a, 3b, and 3c were not homogeneously distributed across Napa Valley. Overall, 86% of all blocks (n = 31) were positive for GLRaVs and 90% of positive blocks (n = 28) had two or more GLRaV-3 variants, suggesting complex disease dynamics that might include multiple insect-mediated introduction events

    Evaluate the Therapeutic Effect of Allicin (L-cysteine) on Clinical Presentation and Prognosis in Patients with COVID-19

    Get PDF
    The antiviral effectiveness of allicin (L-cysteine) has been shown by numerous studies in both levels of clinical and animals. The aim of this study was to evaluate the therapeutic effect of allicin (L-cysteine) on clinical presentation and prognosis. In the current study, 66 patients with COVID-19 based on clinical, radiological presentations and RT-PCR results, were enrolled in two groups of placebo and allicin. In the both allicin (L-cysteine) and placebo groups (n=33 in each group), the capsules were prescribed two times a day for two weeks. Clinical signs and symptoms, blood parameters and chest CT scan were evaluated before and two weeks after treatment. The results showed that allicin (L-cysteine) could significantly impact on improvement of signs and symptoms of COVID-19 after two weeks of treatment in comparison to placebo. Allicin (L-cysteine) not only improve the clinical signs, but also ameliorate the lab and radiological data, which suggest a therapeutic effect for this agent in COVID-19. Our data suggest the therapeutic effect of allicin (L-cysteine) on COVID-19 through improvement of clinical symptoms and acceleration of the healing process

    Integrated Pest Management of Wireworms (Coleoptera: Elateridae) and the Rhizosphere in Agroecosystems

    No full text
    The rhizosphere is where plant roots, physical soil, and subterranean organisms interact to contribute to soil fertility and plant growth. In agroecosystems, the nature of the ecological interactions within the rhizosphere is highly dynamic due to constant disruptions from agricultural practices. The concept of integrated pest management (IPM) was developed in order to promote an approach which is complementary to the environment and non-target organisms, including natural enemies, by reducing the sole reliance on synthetic pesticides to control pests. However, some of the implemented integrated cultural and biological control practices may impact the rhizosphere, especially when targeting subterranean pests. Wireworms, the larval stage of click beetles (Coleoptera: Elateridae), are generalist herbivores and a voracious group of pests that are difficult to control. This paper introduces some existing challenges in wireworm IPM, and discusses the potential impacts of various control methods on the rhizosphere. The awareness of the potential implications of different pest management approaches on the rhizosphere will assist in decision-making and the selection of the control tactics with the least long-term adverse effects on the rhizosphere
    corecore