230 research outputs found

    Corona Influence on Lightning Induced Overvoltages in MOV Protected Multiconductor Power Lines

    Get PDF
    The effects of corona on amplitude and distortion of lightning overvoltages in three-phase MV lines is investigated. The line is protected by surgearresters whose characterstics can be planned taking into account real phenomena

    Efficient Modeling of Discontinuities and Dispersive Media in Printed Transmission Lines

    Get PDF
    The finite-difference time-domain method is applied to the analysis of transmission lines on printed circuit boards. The lossy, dispersive behavior of the dielectric substrate is accurately accounted for by means of several algorithms whose accuracy is discussed and compared. Numerical results are validated by comparisons with measurements and an equivalent circuit of slot in the ground plane is proposed

    Differential Signalling in PCBs: Modeling and Validation of Dielectric Losses and Effects of Discontinuities

    Get PDF
    This paper focuses on differential signal transmission above ground planes with gaps, taking into account the dielectric and conductive losses of the substrate. An equivalent lumped-circuit is proposed and its suitability is investigated by comparing the obtained numerical results with the measured data. Furthermore the differential to common mode conversion of the waves, while crossing the gap, is theoretically analyzed and experimentally verified

    Numerical Simulation of a Capillary Pulsating Heat Pipe in Various Gravity Conditions

    Get PDF
    In the last two decades a new concept of capillary heat pipe without wick structures, commonly known as Pulsating Heat Pipe (PHP), entered the domain of the two-phase passive heat transfer devices. The thermal-hydraulic behavior of this mini-channel with alternate heating and cooling zones, evacuated and partially filled with a working fluid, mainly depends on the interplay between phase change phenomena, capillary and gravity, if present, which may assist or damp the fluid motion. Numerous are the attempts to simulate PHPs complex behavior, but only a few of them are capable of complete thermal-hydraulic simulations; in addition, none is able to predict the effects of various gravity levels. Nevertheless, validated numerical simulations can constitute useful tools to complete and support experimental studies, and to help the design of new and better performing PHPs. Thus, a novel lumped parameters numerical code for the transient thermo-hydraulic simulation of PHPs has been developed and validated. It consists of a two-phase separated flow model where capillary slug flow is assumed a priori. A complete set of balance differential equations accounts for homogeneous and heterogeneous phase-changes, as well as thermal and fluid-dynamic phenomena. This novel model shows a very good quantitative and qualitative prediction capability not only when computing the correct measured equivalent thermal resistance, but even when reproducing the experimental trend of temperature when transient conditions are applied. This paper presents the comparison between numerical and experimental data, for a copper PHP (I.D./O.D. 1.1mm/2.0mm) filled with FC-72 tested experimentally in micro-gravity (58th Parabolic Flight Campaign), and hyper-gravity conditions (ESA SYT!2013 Programme

    Fluid-flow pressure measurements and thermo-fluid characterization of a single loop two-phase passive heat transfer device

    Get PDF
    Abstract A Novel Single Loop Pulsating Heat Pipe (SLPHP), with an inner diameter of 2 mm, filled up with two working fluids (Ethanol and FC-72, Filling Ratio of 60%), is tested in Bottom Heated mode varying the heating power and the orientation. The static confinement diameter for Ethanol and FC-72, respectively 3.4 mm and 1.7mm, is above and slightly under the inner diameter of the tube. This is important for a better understanding of the working principle of the device very close to the limit between the Loop Thermosyphon and Pulsating Heat Pipe working modes. With respect to previous SLPHP experiments found in the literature, such device is designed with two transparent inserts mounted between the evaporator and the condenser allowing direct fluid flow visualization. Two highly accurate pressure transducers permit local pressure measurements just at the edges of one of the transparent inserts. Additionally, three heating elements are controlled independently, so as to vary the heating distribution at the evaporator. It is found that peculiar heating distributions promote the slug/plug flow motion in a preferential direction, increasing the device overall performance. Pressure measurements point out that the pressure drop between the evaporator and the condenser are related to the flow pattern. Furthermore, at high heat inputs, the flow regimes recorded for the two fluids are very similar, stressing that, when the dynamic effects start to play a major role in the system, the device classification between Loop Thermosyphon and Pulsating Heat Pipe is not that sharp anymore

    Preliminary Considerations from the 2nd Phase of Experiments at the SIET/SWAM Facility

    Get PDF
    Severe accident codes study the thermo-hydraulics of the suppression chamber with a limited numbers of nodes, generally solving mass and energy equations and assuming perfect mixing conditions. In a long station black out the effect of the sparger’s design might create local phenomena (e.g. stratification, hot-spots) which are hardly predicted by the current practices, resulting in mispredictions of the containment pressure evolution. In order to understand the effect of the sparger geometry, steam mass flux, water sub-cooling and air concentration the SWAM facility (Steam Water Air Mixing) at the SIET laboratory was employed performing around twenty different experiments, in conditions close to what is expected during the Fukushima Daiichi accident. The test facility (poll and pipes) is built with polycarbonate (transparent material) to ease the acquisition of the standard and high-speed cameras. Vertically distributed thermocouples and high-frequency pressure measurements are employed to obtain quantitative values for phenomena investigation and future CFD validations. It was shown that experiments with pure steam and relatively large diameter holes induce chugging that enhances mixing in the pool. Once chugging ceases, because of the reduced sub-cooling, a hot water layer is created in the upper part of the pool. The presence of air in the pipe induces large stratification from the condition of large subcooling because of the limited mixing introduced in the region below the pipe mouth
    • …
    corecore