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Efficient Modeling of Discontinuities and Dispersive
Media in Printed Transmission Lines

R. Araneo, C. Wang, X. Gu, J. Drewniak, and S. Celozzi

Abstract—The finite-difference time-domain method is applied Il. FDTD ALGORITHMS FORLOSSYDIELECTRIC MEDIA

to the analysis of transmission lines on printed circuit boards. The . .
lossy, dispersive behavior of the dielectric substrate is accurately ~ nthe frequency domain, the substrate (FR-4 type) is modeled

accounted for by means of several algorithms whose accuracy is as a single-pole Debye medium whose relative permittivity can
discussed and compared. Numerical results are validated by com- be expressed as
parisons with measurements and an equivalent circuit of slot in the

ground plane is proposed. €5 — oo

@)

ew) =t + ——

. S . . . 1+ jwr

Index Terms—Dispersive dielectric, FDTD, multiconductor line,

printed circuit. wheree, ande., are, respectively, the zero-frequency relative

permittivity and the relative permittivity at infinite frequency,

andr is the pole relaxation time. In the time domain, two main

strategies have been followed in the past: the first one is based on
HE FINITE-DIFFERENCE time-domain (FDTD) methodthe use of a recursive convolution algorithm for the evaluation
has been widely applied to solve electromagnetic probf the electric flux densityD, as

lems since its first application [1]. In this paper, the method is +

applied to investigate the effects of lossy, dispersive dielectric D(t) = eoe s E(t) + 50/ xt(t —7)E(7) dr. )

substrates and those of discontinuities in the reference plane on 0

high-speed digital signals transmitted in printed circuit boards.In particular, the convolution integrals are approximated

In fact, a general agreement exists on the key role played by @gsuming the electric field piecewise constant (PCRC) [2]

electric losses in limiting the possibility to increase the clocRr Piecewise linear (PLRC) [3] between the discrete times at
frequency of digital circuits. which is calculated, or it is assumed to be constant over each

In the past, various efficient algorithms [2]-[8] have been prdiMe segment centered around”™ (PC'RC) [4]. It has been

sented to simulate in the time domainthefrequency—dependeﬂ%@nonsnated that the PCRC scheme s first-order accurate,
. . s L —whereas the PLRC and PRC ones are second-order accurate.
of the dielectric constant; their accuracy in this kind of config-

rations is compared and discussed. To a much lesser ext he second class of methods is based on the introduction of
uratl ! P Iscu ' u *Eh auxiliary differential equation (ADE) for the update of the

the influe_nce of the dielectric dispersive bghavior on the Signghctric field. In particular, ADE methods substitute the inte-
propagation has been analyzed, and, to this end, different cQips| constitutive relation (2) with a time-domain auxiliary dif-

. INTRODUCTION

mercial substrates are cqmpared. o ' ferential equation which, in the different direct integration tech-
A perfe.ctly matche.d uniaxial medium is used to terminate thgques, links either the electric flux densify(t) [5] (ADE-D),
computational domain [9]. or the polarization currents, (¢) [6] (ADE-J,) or the polar-

Moreover, FDTD results concerning the scattering pararzation vectorP(t) to the electric field, with an explicit [7]
eters of a differential line above a dispersive dielectric a(ADE-PE) or semi-implicit [8] (ADE-FPI) scheme. The ADE
compared with measurements confirming the accuracy isftime stepped in synchronism with Ampere’s equation, thus
numerical predictions as well as the influence of dielesielding to a system of second-order accurate equations. Ac-
tric losses on the overall performance of high-speed digitgprding to the choice of the numerical algorithm, different time-
circuits. marching explicit equations, available in the above mentioned

Finally, an equivalent circuit of the typical discontinuity rep_Iiterature, hold for the update of the unknown electric field.

resented by a slot in the ground plane is extracted from theIn order to investigate the accuracy of the available different

FDTD results and used in a computer-aided design circuit sin{mplementanons, an auxMar_y ”.‘teg'fa' equation is considered, in
ich the curl of the magnetic field is assumed to be known and

L . h
lrztaﬂr,s?risc?jzzg its validity through measurements conductec{'l\é)g integral equation is solved in terms of the unknown electric

field. Thus, the following equation has to be solved with respect
to the electric field:
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Fig. 2. Time trends of the transmitted electric field in different dielectric
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Fig. 1. Time trends of the errors on the electric field evaluated inside dielect Position [cm]

materials of type (a) 1 and (b) 3, for different methods.
Fig. 3. Spatial profiles of the electric field in different dielectric medig, &t

10 s71), through (2) and (3) aexactvalue for the curl ofH 83.365 ps.

is evaluated, then (3) is solvedimericallyin order to find the : . .
electric field. Fig. 1 shows the time trend of the errors due to tﬁééan by the method adopted for the simulation and special care

above algorithms. The errors (in decibels) are evaluated on & Fo be paid to the simulation of the substrate, as shown in
e (n) : o ection 111
electric field, £\, at a given position, as

AErm — 90 - log | Fapprox _ prexact| 4 [ll. I NFLUENCE OF DIELECTRIC CHARACTERISTICS

dB = £V 10810 Fexact ) ON THE SIGNAL PROPAGATION

for two dielectric materials [10] having, respectively, ; = Despite to the wide literature covering the subject of the nu-
4.5, e0o1 = 3.89, 17 = 1.634 ns,o; = 4.159 puS/m and merical time-domain modeling of lossy dielectrics, much less
€53 =3.9, £00_3 = 3.693, 73 = 0.861 ns,03 = 1.89 uS/m. attention has been devoted to the analysis of the signal propa-

For all the above error evaluations, a time step below tlyation characteristics exhibited by different types of substrates.
Courant stability condition has been considered, obtained bythe following, the transmitted electric field inside a dielectric
multiplying the limit by a factor 0.8, because in practical confighalf-space is analyzed, considering three different dielectrics:
urations several discontinuities are dealt with. It should be notttk two already considered and the third one hawing = 4.5,
that aftert = 140 ps the pulse is practically extinguished and.. o = 4.19, 72 = 0.949 ns, o2 = 4.539 xS/m. In Fig. 2, the
thus, the significant (10% of the peak value) time interval is itime trend of the electric field in the dielectric material is shown,
the range between 40 ps and 110 ps. at a distance: = 9 cm from the interface. The incident electro-

From the results, it can be concluded that, in this class of praagnetic field is a plane wave (Gaussian pulse), as considered
lems and for the characteristics of actual dielectric substratpsgviously.
the various methods available in literature agivalentas to In Fig. 3, the spatial distribution of the electric field in the
their accuracy in representing the dispersive nature of materialglectric material is shown, at a given time= 83.365 ps, as-

In fact, the signal propagation characteristics are affected irsaming the same field source as before. It is evident that dielec-
much more appreciable way by the dielectric properties rathteic characteristics affects signal propagation considerably and
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Fig. 4. System configuration: (a) cross-section, (b) top view.
Fig.6. Measured and computed frequency spectra of the scattering parameters
S31 andS4,, in case of ground plane without a gap.
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Fig. 5. Frequency spectra of the scattering param&terfor either a lossy
dispersive dielectric substrate and a lossless one, in case of ground plane witrllzout
a gap. :

Measured and computed frequency spectra of the scattering parameters
S31 andSy,y, in case of ground plane with a gap.

that, in this class of problems, focus has to be put on the materia|t is worth noting the importance of accounting for losses, in
modeling rather than on the numerical algorithms.

order to simulate correctly the behavior of the addressed struc-
ture above 2 GHz. In Fig. 6, scattering paramefgssand Sy,

for the configurations without the gap are shown and compared
. . : . , . - with measured data in order to validate the numerical predic-
First, the simple differential configuration shown in Fig. 4 an - . . .

; : A . lons. The geometric dimensions of the board and the dielectric
considered without gap (geometric dimensiofs:= 16 cm;

IV. NUMERICAL ANALYSIS OF PRINTED TRANSMISSIONLINES

W = 9cm L — 11.50m h — 1.5 mm: andw = d — parametgrs of the substrate are equal to that of the previous ex-
. . ; ; . ample, with a gap of 2 mm &#/2.

1 mm) is investigated. The dielectric substrate is modeled € 1n Fig. 7. the same-parameters are reported when the ga

ther considering losses( = 4.3, eoc = 4.1, 7 = 0.033 ns, 9. 7, P P gap

is present¢ = 2 mm) on the ground plane. The FDTD resul
andos = 200 u©S/m) or losslesse(. 4.11 at the central S present{ . ) on the ground pla . 'ne esults
. . ) ree favorably with the measurements in the whole frequency
frequency 5.025 GHz), in order to underline the influence g :
. . . . . . range of interest.
dielectric losses in the analysis of high-frequency signal tra

ns-

mission propagation. In Fig. 5, the scattering parameters

computed reading the ground-to-line voltage at the port 2 op- V. DISCONTINUITY MODELING

posite to the driving ports 1 and 3, between which a differential An accurate and general way to model the discontinuity is to
signal is applied, is shown in the lossless and lossy cases. consider the gap in the ground plane as a transmission line (slot-
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VI. CONCLUSION

The FDTD analysis of printed transmission lines has been
carried out taking into account the real dispersive behavior of
lossy substrates used in practical configurations. The correct
modeling of dielectric substratess with the inclusion of the ef-
fect of lossess has been shown to be essential in actual printed
circuit boards to predict the signal propagation in the gigahertz
range. An error analysis of the various algorithms available to
simulate the dielectric has been conducted, and the influence of
dielectric characteristics on the signal propagation has been as-
sessed. Finally, an equivalent circuit for modeling slots in the
ground plane has been proposed and validated. All the numer-
ical predictions have been validated experimentally.

Fig. 8. Equivalent circuit for the two microstrip lines crossing a split in the

reference plane.
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Fig. 9. Comparison among measured data, FDTD, and SPICE simulations. (8]
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