
Missouri University of Science and Technology Missouri University of Science and Technology 

Scholars' Mine Scholars' Mine 

Electrical and Computer Engineering Faculty 
Research & Creative Works Electrical and Computer Engineering 

01 Mar 2002 

Efficient Modeling of Discontinuities and Dispersive Media in Efficient Modeling of Discontinuities and Dispersive Media in 

Printed Transmission Lines Printed Transmission Lines 

R. Araneo 

Chen Wang 

Xiaoxiong Gu 

James L. Drewniak 
Missouri University of Science and Technology, drewniak@mst.edu 

et. al. For a complete list of authors, see https://scholarsmine.mst.edu/ele_comeng_facwork/1960 

Follow this and additional works at: https://scholarsmine.mst.edu/ele_comeng_facwork 

 Part of the Electrical and Computer Engineering Commons 

Recommended Citation Recommended Citation 
R. Araneo et al., "Efficient Modeling of Discontinuities and Dispersive Media in Printed Transmission 
Lines," IEEE Transactions on Magnetics, vol. 38, no. 2, pp. 765-768, Institute of Electrical and Electronics 
Engineers (IEEE), Mar 2002. 
The definitive version is available at https://doi.org/10.1109/20.996198 

This Article - Journal is brought to you for free and open access by Scholars' Mine. It has been accepted for 
inclusion in Electrical and Computer Engineering Faculty Research & Creative Works by an authorized administrator 
of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for 
redistribution requires the permission of the copyright holder. For more information, please contact 
scholarsmine@mst.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/229202875?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng
https://scholarsmine.mst.edu/ele_comeng_facwork/1960
https://scholarsmine.mst.edu/ele_comeng_facwork?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1960&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1960&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/20.996198
mailto:scholarsmine@mst.edu


IEEE TRANSACTIONS ON MAGNETICS, VOL. 38, NO. 2, MARCH 2002 765

Efficient Modeling of Discontinuities and Dispersive
Media in Printed Transmission Lines

R. Araneo, C. Wang, X. Gu, J. Drewniak, and S. Celozzi

Abstract—The finite-difference time-domain method is applied
to the analysis of transmission lines on printed circuit boards. The
lossy, dispersive behavior of the dielectric substrate is accurately
accounted for by means of several algorithms whose accuracy is
discussed and compared. Numerical results are validated by com-
parisons with measurements and an equivalent circuit of slot in the
ground plane is proposed.

Index Terms—Dispersive dielectric, FDTD, multiconductor line,
printed circuit.

I. INTRODUCTION

T HE FINITE-DIFFERENCE time-domain (FDTD) method
has been widely applied to solve electromagnetic prob-

lems since its first application [1]. In this paper, the method is
applied to investigate the effects of lossy, dispersive dielectric
substrates and those of discontinuities in the reference plane on
high-speed digital signals transmitted in printed circuit boards.
In fact, a general agreement exists on the key role played by di-
electric losses in limiting the possibility to increase the clock
frequency of digital circuits.

In the past, various efficient algorithms [2]–[8] have been pre-
sented to simulate in the time domain the frequency-dependence
of the dielectric constant; their accuracy in this kind of config-
urations is compared and discussed. To a much lesser extent,
the influence of the dielectric dispersive behavior on the signal
propagation has been analyzed, and, to this end, different com-
mercial substrates are compared.

A perfectly matched uniaxial medium is used to terminate the
computational domain [9].

Moreover, FDTD results concerning the scattering param-
eters of a differential line above a dispersive dielectric are
compared with measurements confirming the accuracy of
numerical predictions as well as the influence of dielec-
tric losses on the overall performance of high-speed digital
circuits.

Finally, an equivalent circuit of the typical discontinuity rep-
resented by a slot in the ground plane is extracted from the
FDTD results and used in a computer-aided design circuit simu-
lator, assessing its validity through measurements conducted on
real structures.
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II. FDTD ALGORITHMS FORLOSSYDIELECTRIC MEDIA

In the frequency domain, the substrate (FR-4 type) is modeled
as a single-pole Debye medium whose relative permittivity can
be expressed as

(1)

where and are, respectively, the zero-frequency relative
permittivity and the relative permittivity at infinite frequency,
and is the pole relaxation time. In the time domain, two main
strategies have been followed in the past: the first one is based on
the use of a recursive convolution algorithm for the evaluation
of the electric flux density , as

(2)

In particular, the convolution integrals are approximated
assuming the electric field piecewise constant (PCRC) [2]
or piecewise linear (PLRC) [3] between the discrete times at
which is calculated, or it is assumed to be constant over each
time segment centered around (PC RC) [4]. It has been
demonstrated that the PCRC scheme is first-order accurate,
whereas the PLRC and PCRC ones are second-order accurate.

The second class of methods is based on the introduction of
an auxiliary differential equation (ADE) for the update of the
electric field. In particular, ADE methods substitute the inte-
gral constitutive relation (2) with a time-domain auxiliary dif-
ferential equation which, in the different direct integration tech-
niques, links either the electric flux density [5] (ADE- ),
or the polarization currents [6] (ADE- ) or the polar-
ization vector to the electric field, with an explicit [7]
(ADE- ) or semi-implicit [8] (ADE- ) scheme. The ADE
is time stepped in synchronism with Ampere’s equation, thus
yielding to a system of second-order accurate equations. Ac-
cording to the choice of the numerical algorithm, different time-
marching explicit equations, available in the above mentioned
literature, hold for the update of the unknown electric field.

In order to investigate the accuracy of the available different
implementations, an auxiliary integral equation is considered, in
which the curl of the magnetic field is assumed to be known and
the integral equation is solved in terms of the unknown electric
field. Thus, the following equation has to be solved with respect
to the electric field:

(3)

Assuming a Gaussian pulse as electric field excitation (
, s,
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(a)

(b)

Fig. 1. Time trends of the errors on the electric field evaluated inside dielectric
materials of type (a) 1 and (b) 3, for different methods.

s ), through (2) and (3) anexactvalue for the curl of
is evaluated, then (3) is solvednumericallyin order to find the
electric field. Fig. 1 shows the time trend of the errors due to the
above algorithms. The errors (in decibels) are evaluated on the
electric field, , at a given position, as

(4)

for two dielectric materials [10] having, respectively:
, , ns, S/m and

, , ns, S/m.
For all the above error evaluations, a time step below the

Courant stability condition has been considered, obtained by
multiplying the limit by a factor 0.8, because in practical config-
urations several discontinuities are dealt with. It should be noted
that after ps the pulse is practically extinguished and
thus, the significant (10% of the peak value) time interval is in
the range between 40 ps and 110 ps.

From the results, it can be concluded that, in this class of prob-
lems and for the characteristics of actual dielectric substrates,
the various methods available in literature areequivalentas to
their accuracy in representing the dispersive nature of materials.
In fact, the signal propagation characteristics are affected in a
much more appreciable way by the dielectric properties rather

Fig. 2. Time trends of the transmitted electric field in different dielectric
materials, atx = 9 cm (origin at air-dielectric interface).

Fig. 3. Spatial profiles of the electric field in different dielectric media, att =

83:365 ps.

than by the method adopted for the simulation and special care
has to be paid to the simulation of the substrate, as shown in
Section III.

III. I NFLUENCE OFDIELECTRIC CHARACTERISTICS

ON THE SIGNAL PROPAGATION

Despite to the wide literature covering the subject of the nu-
merical time-domain modeling of lossy dielectrics, much less
attention has been devoted to the analysis of the signal propa-
gation characteristics exhibited by different types of substrates.
In the following, the transmitted electric field inside a dielectric
half-space is analyzed, considering three different dielectrics:
the two already considered and the third one having ,

, ns, S/m. In Fig. 2, the
time trend of the electric field in the dielectric material is shown,
at a distance cm from the interface. The incident electro-
magnetic field is a plane wave (Gaussian pulse), as considered
previously.

In Fig. 3, the spatial distribution of the electric field in the
dielectric material is shown, at a given time ps, as-
suming the same field source as before. It is evident that dielec-
tric characteristics affects signal propagation considerably and
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(a)

(b)

Fig. 4. System configuration: (a) cross-section, (b) top view.

Fig. 5. Frequency spectra of the scattering parameterS for either a lossy
dispersive dielectric substrate and a lossless one, in case of ground plane without
a gap.

that, in this class of problems, focus has to be put on the material
modeling rather than on the numerical algorithms.

IV. NUMERICAL ANALYSIS OF PRINTED TRANSMISSIONLINES

First, the simple differential configuration shown in Fig. 4 and
considered without gap (geometric dimensions: cm;

cm; cm; mm; and
mm) is investigated. The dielectric substrate is modeled ei-

ther considering losses ( , , ns,
and S/m) or lossless ( at the central
frequency 5.025 GHz), in order to underline the influence of
dielectric losses in the analysis of high-frequency signal trans-
mission propagation. In Fig. 5, the scattering parameters,
computed reading the ground-to-line voltage at the port 2 op-
posite to the driving ports 1 and 3, between which a differential
signal is applied, is shown in the lossless and lossy cases.

Fig. 6. Measured and computed frequency spectra of the scattering parameters
S andS , in case of ground plane without a gap.

Fig. 7. Measured and computed frequency spectra of the scattering parameters
S andS , in case of ground plane with a gap.

It is worth noting the importance of accounting for losses, in
order to simulate correctly the behavior of the addressed struc-
ture above 2 GHz. In Fig. 6, scattering parametersand
for the configurations without the gap are shown and compared
with measured data in order to validate the numerical predic-
tions. The geometric dimensions of the board and the dielectric
parameters of the substrate are equal to that of the previous ex-
ample, with a gap of 2 mm at /2.

In Fig. 7, the same -parameters are reported when the gap
is present ( mm) on the ground plane. The FDTD results
agree favorably with the measurements in the whole frequency
range of interest.

V. DISCONTINUITY MODELING

An accurate and general way to model the discontinuity is to
consider the gap in the ground plane as a transmission line (slot-
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Fig. 8. Equivalent circuit for the two microstrip lines crossing a split in the
reference plane.

Fig. 9. Comparison among measured data, FDTD, and SPICE simulations.

line) [11], [12]. Without entering into the physics of the conver-
sion from the so-calledmicrostrip modeto theslotline mode,
andvice versa, the proposed equivalent lumped circuit is shown
in Fig. 8. The excess transverse capacitancesmodel the effects
of the fringing fields which are present between the signal line
and the edges of the reference plane. The excess longitudinal
inductance takes into account the effect of the partial absence
of the ground plane beneath the stripline. The numerical values
of and can be obtained following the procedure discussed
in [13] and [14]. Moreover, the signal conversion from stripline
mode to slotline mode and the reciprocal mode conversion are
modeled, respectively, by means of the current-controlled cur-
rent source and the voltage-controlled voltage source
which are driven by the corresponding quantities with super-
script “ .” Fig. 9 demonstrates the accuracy of the results pre-
dicted by means of the equivalent circuit.

VI. CONCLUSION

The FDTD analysis of printed transmission lines has been
carried out taking into account the real dispersive behavior of
lossy substrates used in practical configurations. The correct
modeling of dielectric substratess with the inclusion of the ef-
fect of lossess has been shown to be essential in actual printed
circuit boards to predict the signal propagation in the gigahertz
range. An error analysis of the various algorithms available to
simulate the dielectric has been conducted, and the influence of
dielectric characteristics on the signal propagation has been as-
sessed. Finally, an equivalent circuit for modeling slots in the
ground plane has been proposed and validated. All the numer-
ical predictions have been validated experimentally.
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