45 research outputs found

    Wireless Magnetic Motion Capture System for Multi-Marker Detection

    Get PDF
    application/pdf学術論文 (Article)450297 bytesjournal articl

    Time-resolved magnetic resonance angiography as a follow-up method for visceral artery aneurysm treated with coil-embolisation

    Get PDF
    Purpose: The purpose of this study is to assess the feasibility and usefulness of time-resolved magnetic resonance angiography (TR-MRA) for follow-up of visceral artery aneurysms (VAAs) after embolotherapy. Material and methods: Twenty-one VAAs (11 splenic, six renal, three internal iliac, and one superior pancreaticoduodenal artery aneurysms) in 18 patients (median age, 64 years; range, 36-88 years) previously treated by embolisation with platinum coils, were evaluated. The mean size of the aneurysm was 10.5 cm3 (range, 0.3-132 cm3). Among them, 19 lesions were treated by aneurysmal packing with or without distal-to-proximal embolisation. For the remaining two lesions, distal-to-proximal embolization alone was performed. The mean observation period after embolotherapy was 35 weeks (range, 4-216). All patients underwent TR-MRA following an intravenous bolus injection of gadolinium chelate. Recanalisation was diagnosed when any portion of the aneurysmal sac was enhanced in the arterial phase. Results: On TR-MRA, two lesions were diagnosed as recanalised. They were confirmed by transcatheter arteriography and re-treated by embolotherapy. For the remaining 19 lesions, there were no findings of recanalisation on TR-MRA. Conclusions: TR-MRA appears to be a feasible method for follow-up examination of VAAs treated by embolotherapy

    STING signalling is terminated through ESCRT-dependent microautophagy of vesicles originating from recycling endosomes

    Get PDF
    STING炎症シグナルの終結分子機構 --新規細胞内分解システムの発見--. 京都大学プレスリリース. 2023-03-14.Stimulator of interferon genes (STING) is essential for the type I interferon response against a variety of DNA pathogens. Upon emergence of cytosolic DNA, STING translocates from the endoplasmic reticulum to the Golgi where STING activates the downstream kinase TBK1, then to lysosome through recycling endosomes (REs) for its degradation. Although the molecular machinery of STING activation is extensively studied and defined, the one underlying STING degradation and inactivation has not yet been fully elucidated. Here we show that STING is degraded by the endosomal sorting complexes required for transport (ESCRT)-driven microautophagy. Airyscan super-resolution microscopy and correlative light/electron microscopy suggest that STING-positive vesicles of an RE origin are directly encapsulated into Lamp1-positive compartments. Screening of mammalian Vps genes, the yeast homologues of which regulate Golgi-to-vacuole transport, shows that ESCRT proteins are essential for the STING encapsulation into Lamp1-positive compartments. Knockdown of Tsg101 and Vps4, components of ESCRT, results in the accumulation of STING vesicles in the cytosol, leading to the sustained type I interferon response. Knockdown of Tsg101 in human primary T cells leads to an increase the expression of interferon-stimulated genes. STING undergoes K63-linked ubiquitination at lysine 288 during its transit through the Golgi/REs, and this ubiquitination is required for STING degradation. Our results reveal a molecular mechanism that prevents hyperactivation of innate immune signalling, which operates at REs

    Glycoprotein Hyposialylation Gives Rise to a Nephrotic-Like Syndrome That Is Prevented by Sialic Acid Administration in GNE V572L Point-Mutant Mice

    Get PDF
    Mutations in the key enzyme of sialic acid biosynthesis, UDP-N-acetylglucosamine 2-epimerase/N-acetyl-mannosamine kinase, result in distal myopathy with rimmed vacuoles (DMRV)/hereditary inclusion body myopathy (HIBM) in humans. Sialic acid is an acidic monosaccharide that modifies non-reducing terminal carbohydrate chains on glycoproteins and glycolipids, and it plays an important role in cellular adhesions and interactions. In this study, we generated mice with a V572L point mutation in the GNE kinase domain. Unexpectedly, these mutant mice had no apparent myopathies or motor dysfunctions. However, they had a short lifespan and exhibited renal impairment with massive albuminuria. Histological analysis showed enlarged glomeruli with mesangial matrix deposition, leading to glomerulosclerosis and abnormal podocyte foot process morphologies in the kidneys. Glycan analysis using several lectins revealed glomerular epithelial cell hyposialylation, particularly the hyposialylation of podocalyxin, which is one of important molecules for the glomerular filtration barrier. Administering Neu5Ac to the mutant mice from embryonic stages significantly suppressed the albuminuria and renal pathology, and partially recovered the glomerular glycoprotein sialylation. These findings suggest that the nephrotic-like syndrome observed in these mutant mice resulted from impaired glomerular filtration due to the hyposialylation of podocyte glycoproteins, including podocalyxin. Furthermore, it was possible to prevent the nephrotic-like disease in these mice by beginning Neu5Ac treatment during gestation

    Life history and migration of Sakhalin taimen, Hucho perryi, caught from Lake Akkeshi in eastern Hokkaido, Japan, as revealed by Sr:Ca ratios of otoliths

    Get PDF
    Microchemical analysis of the strontium (Sr) and calcium (Ca) ratios of otoliths was conducted to determine the life history and migration of anadromous Sakhalin taimen, Hucho perryi. In 2008 and 2009, 10 specimens were sampled from Lake Akkeshi in eastern Hokkaido, Japan. Our results indicated that some specimens migrated to brackish waters during their early life history. Because the Sr:Ca ratios of the specimens in this study were all less than those of specimens from Sakhalin Island during a previous study, specimens of Lake Akkeshi may have migrated to brackish water, or remained in the ocean for only a short period
    corecore