47 research outputs found

    Expression of unprocessed glutelin precursor alters polymerization without affecting trafficking and accumulation

    Get PDF
    Rice glutelin is synthesized as a precursor in the endosperm endoplasmic reticulum and then deposited within the protein storage vacuole protein body-II (PB-II) as an aggregate, with a high degree of polymerized higher-order structure comprising mature acidic and basic subunits after post-translation processing cleavage. In order to investigate the functional role of this processing and its effect on folding assembly, wild-type GluA2 and its mutant cDNA (mGluA2), in which the conserved processing site (Asn-Gly) at the junction between the acidic and basic chains was replaced with Ala-Ala, were expressed under the control of the endosperm-specific GluB1 promoter in the mutant rice a123 line lacking glutelin GluA1, GluA2, and GluB4. The mGluA2 precursor was synthesized and stably targeted to PB-II without processing in the transgenic rice seeds like the wild-type GluA2. Notably, the saline-soluble mGluA2 precursor assembled with the other type of processed glutelin GluB as a trimer in PB-II, although such hetero-assembly with GluB was not detected in the transformant containing the processed GluA. Furthermore, the mGluA2 precursor in the glutelin fraction was deposited in PB-II by forming a quite different complex from the processed mature GluA2 products. These results indicate that post-translational processing of glutelin is not necessary for trafficking and stable accumulation in PB-II, but is required for the formation of the higher-order structure required for stacking in PB-II

    The Advancement of Biomaterials in Regulating Stem Cell Fate.

    Get PDF
    Stem cells are well-known to have prominent roles in tissue engineering applications. Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) can differentiate into every cell type in the body while adult stem cells such as mesenchymal stem cells (MSCs) can be isolated from various sources. Nevertheless, an utmost limitation in harnessing stem cells for tissue engineering is the supply of cells. The advances in biomaterial technology allows the establishment of ex vivo expansion systems to overcome this bottleneck. The progress of various scaffold fabrication could direct stem cell fate decisions including cell proliferation and differentiation into specific lineages in vitro. Stem cell biology and biomaterial technology promote synergistic effect on stem cell-based regenerative therapies. Therefore, understanding the interaction of stem cell and biomaterials would allow the designation of new biomaterials for future clinical therapeutic applications for tissue regeneration. This review focuses mainly on the advances of natural and synthetic biomaterials in regulating stem cell fate decisions. We have also briefly discussed how biological and biophysical properties of biomaterials including wettability, chemical functionality, biodegradability and stiffness play their roles

    Transform-limited 480 GHz colliding-pulse modelocked laser diode

    No full text

    20 GHz subpicosecond monolithic modelocked laser diode

    No full text

    Four-wave mixing in a modelocked DBR laser diode

    No full text

    Retiming and reshaping function of all-optical clock extraction at 160 Gb/s in monolithic mode-locked laser diode

    No full text

    A pilot study of proton beam theary for mucosal melanoma of the head and neck

    No full text
    corecore