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Abstract: The electro-optic power pumping system model using the inline successive technique within the modified add-drop 

filter is proposed. A pumping system consists of a closed loop panda ring resonator, from which the optical power is coupled 

inline into the system. By controlling the two side phase modulators, the whispering gallery mode (WGM) is generated by the 

amplitude-squeezed light within the modified add-drop filter. By using the proposed circuits, the low current can be applied into 

the system via a gold layer connection, from which the amplified output current can be obtained at the throughput port, which can 

be functioned as the electronic operational amplifier (Op-amp). In application, the WGM output is the amplified signal that can be 

used for the up (down) link in free space communication network called light fidelity (LiFi). The electro-optic signals conversion 

can be performed by the stacked layers of silicon-graphene-gold materials. The results obtained have shown that large gain is 

obtained at the WGM output, which is  5 x         (    )  , when the pumping saturation time is  2 fs.  It concludes the 

suitability of our proposed model for light fidelity, LiFi up-down link conversion. 
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1. Introduction
An optical repeater is the most important equipment in the optical transmission line and networks. There are many types of 

repeaters available nowadays [1-4], where the trends of the optical devices and components are focused on the small scale device 

regime that can have the system redundancy in terms of size and system performance, especially, the transmission capacity [5-8]. 

Pornsuwancharoen et al have shown a promising form of the material called a plasmonic island, which consists of the stacked 

layers of silicon-grapheme-gold materials [9-12]. They have reported that the electro-optic signal conversion can be carried out 

within the micro-scale device. The advantage of the system is that the output of the modified add-drop filter (panda ring) can be 

generated in the form of the WGM output. This can provide the use of free space link named as light fidelity (LiFi), where the 

broadband up and down links are required for the large demands of users [13-17]. WGM of light generated by the small-scale 

devices has been widely investigated and used [18-23]. One of them is the WGM generated by the microring resonator [9], which 

shows the potential for the light source, energy source, and sensor application. This paper presents the use of a closed loop panda 

ring resonator for the optical power pumping that has, to the best of our knowledge, never been presented elsewhere because of 

the conflict of interest with the energy conservation concept. Recently, we have found that this problem is clearly understood by 

using the squeezed monochromatic light within a microring resonator, where light pulse (photon) is projected by the quantum 

harmonic oscillator [24], in which light can be squeezed and observed under specific conditions. The uncertain saturation    in 

terms of ∆E∆t or ∆X∆P has shown interesting results when the monochromatic light propagates within the nonlinear microring 

resonator, where the limitation of the energy conservation and the uncertainty saturation can give rise to useful applications. By 

using the squeezing concept, the inline and successive pumping systems can be employed within the optical transmission link that 

can be used for optical power recovery [25-27]. In this work, the inline and successive pumping schemes are combined together, 

in which the electrical current amplifier and optical power pumping can be employed. The equipment such as electro-optical 

power charger, multiplexer, modulator and filter can also be applied. The simulations are performed using the Opti-wave and 

MATLAB programs, and obtained the pumping output characteristics and the saturation times which are potentially usable for 

practical applications. Theoretical background of the presented investigation is given below. 
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2. Background 
The inline coupled power from the monochromatic light source is input into the system as shown in Figure 1, which can be 

controlled by the selected coupling length (or gap). By controlling the two side ring radii, WGM output, which is the electrical 

field output (𝐸𝑃𝐼), can be obtained according to relation given in Eq 1 [19]. 
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Equation (1) is the electrical field in the cylindrical coordinate, where 2 2 2 2 2

mn 0 0A = k k w n ρ , 4 2 2

0 0B = w k n ,
2C = ,  w, A0 is constant of 

input signal, a is the radius of center ring, 
1 1x = 1-γ , 1 1y = 1-κ ,n0 = linear refractive index,

0 eff

0

2π
k = n

λ

, neff is effective index, 
0λ is 

input wavelength, ρ and φ are  the cylindrical coordinate radius and phase respectively, 
1 1κ , γ  is the coupling constant and 

attenuation coefficient between linear waveguide and center of Panda ring resonator, k0n is the wave number in the Bessel’s 

function (J0) by n is mode of electromagnetic field, and  L is the center ring circumference. 

For simplicity, the graphical method (Optiwave program) is  utilized, from which the required outputs such as WGM and 𝐸  are 

obtained. By using the equations (1)-(3), the optical input field (𝐸  ) and output field (𝐸  ) of the closed loop Panda ring system as shown in 

Figure 1 are obtained. More details are found in the reference [6]. 

 

𝑬 𝒏   𝑬 = 𝑬𝟎𝒆
  𝒌𝒛             (2) 

𝑬  =�̅�𝑬  𝟏-�̅�𝑬  𝟐𝒆
−𝜶

𝟐

𝑳

𝟐
  𝒌𝒏

𝑳

𝟐 [
�̅�𝑬 𝒏𝟏(𝒆

−𝜶
𝟐
𝑳
𝟐− 𝒌𝒏

𝑳
𝟐)

𝟐

+�̅�𝑬  𝟐(𝒆
−𝜶
𝟐
𝑳
𝟐− 𝒌𝒏

𝑳
𝟐)

𝟑

𝟏 �̅�(𝒆
−𝜶
𝟐
𝑳
𝟐− 𝒌𝒏

𝑳
𝟐)

𝟐 ]    (3) 

 

Where 𝐸  is the electric field amplitude (real), 𝒌𝒛 is the wave number in the propagation direction,    is the angular frequency, t is 

the time evolution. 𝐸       𝐸    are the input at the input and control(add) ports respectively.   is the attenuation coefficient. 

  =√ −   ,   √ −   ,  ̅       ,  ̅         √  𝐸  ,  ̅     
     √  𝐸  𝐸  ,  ̅  (    )

     √    𝐸  𝐸  
 ,  ̅ 

=        𝐸  𝐸  . 𝐸       𝐸   are the optical fields circulated components of the right and left hand phase modulators. 
 

 

 

Figure 1: A schematic illustration of a closed loop Panda-ring for the inline successive pumping, where   ,   ,   ,are the ring radii of the center 

ring and two side rings, right (  ) and left (  ) hands,    : Silicon ring radius,    : Graphene ring radius,    : Gold ring radius. 𝐸   and 𝐸   are 

the input and throughput electrical fields, respectively. The coupling constants   =   =   =   = 0.5. 

 
 

3. Simulation Results 

Under specific conditions, the throughput port output can be observed due to resonant condition, however, the energy 

conservation of the system must be satisfied, hence, the normalized system is applied for the remaining power. Additionally, the 

squeezed light saturation has also taken part to maintain the pumping system validation. The optical power of inline input optical 

field (𝐸  ) is coupled into the closed loop Panda-ring system via the selected gap as shown in Figure 1 A fraction of this power is 

coupled into the Panda-ring system and into the add port respectively. Hence, the add port optical power becomes the input power 

of the successive system. Similarly, the fraction power from the add port is coupled into the system and into the drop port of the 

closed loop microring system. Finally, the drop port output is entered into the input port, from which the closed loop circulation is 

completed. The process repeats until the system achieves the resonant condition, where the pumping power output is saturated. 

The desired optical output is the WGM that can be obtained by adjusting the two side ring parameters. By using the plasmonic 

island, the electron mobility within the plasmonic island is driven by the WGM output, which is the driven group velocity. The 

required out is the resonance that can be obtained when the output mobility is saturated and the successive pumping time is 

known. 



In simulation, a fraction of the transmission line power is coupled into the successive pumping system where the input 

source wavelength is 1.55 µm. The advantage of the modified add-drop filter with two side rings is that the nonlinear effect can 

offer shorter output pulse width and easier WGM resonant output control than the tradition system. Moreover, the pumping power 

can be squeezed and used for uplink transmission. The reversed direction (downlink) can also be applied by connecting with the 

plasmonic island. The successive pumping is performed and the required resonant output is obtained and plotted. Other simulation 

parameters are given in the figure captions and the following contents.  In Figure 1, the resonant pumping output is the WGM 

output of the equation (1) [19]. It is the driven group velocity that can escalate the electron mobility. The relationship between the 

light intensity (I), group velocity and the electron mobility can be expressed as 𝑰  𝑬𝟐   ( 
 𝒅

 
)𝟐,  which is defined by Vd = µE. 

When an electric field E is applied to the grating sensor, an electric current is established in the conductor. The density Js of this 

current is given by Js = σE. The constant of proportionality σ is called the specific conductance or electrical conductivity of the 

conductor, for gold it is 1.6x10
8
 W

-1
m

-1
 [28, 29].  The electron mobility in gold is 42.6 cm2 V-1 s-1, the electron mass is 9.10 × 

10-31 kilograms, the electron charge is 1.60 × 10-19 coulombs. The refractive index of the silicon is 1.46. The linear and 
nonlinear refractive indices of the GaAsInP/P are 3.14 and 1.30x10-13 m2W-1, respectively. The attenuation coefficient of the 
waveguide is 0.1 dB (mm)-1. In simulation, the input power from the remote source is coupled into the island via the coupling 

lens. The input power was varied from 0.5-5.0 W. By using the graphical method (Opti-wave), the simulation results are as shown 

in Figure 2, in which the required pumping is done by WGM. Selected parameters are then used for simulation with MATLAB 

program. The plot of the relationship between the input power and the output driven mobility is sown in Figure 3, which is 

showing promising results. The plot of the input, through port and island outputs is shown in Figure 3(a), (b) and (c) respectively, 

the large output gain is obtained at the WGM output, which is  5x         (    )  . The output mobility is plotted against 

the pumping time as shown in Figure 4, which gives the output mobility of  5x         (   )   for a pumping time of  2 fs  

and  input power of 1.0-5.0 W.  From these results, it is shown that the use of the proposed system for a plasmonic op-amp and an 

up-downlink is possible, especially, for LiFi (free space) link. 

 

 

(a) 

 

 
(b) 

 
Figure 2: Shows (a) the 3D Opti-wave result of the system in Figure 1 for preliminary investigation, the parameters are the input power = 1.0 

W,    = 1.6 µm,    =    = 0.9 µm,     =   =     = 1.5 µm, (b) input and throughput port signals. 
 



 
 

 
 

 
 

 

Figure 3: The plots of the mobility outputs, the gold and graphene layer parameters are w = 0.5 µm, thickness = 0.5 µm, the gold and graphene 

island thickness = 0.5 µm. 

 

 



 
Figure 4: The plot of the mobility output of the plasmonic island with time for various input coupling power. The gold and graphene island 

parameters are thickness = 0.5 µm,     =     =     = 1.5 µm, the input light power are ranged from 1 W to 5 W. 

 

4. Conclusion 
We have shown that the optical power inline pumping using the closed loop Panda-ring for up-downlink conversion, especially, 

for LiFi network. Since large bandwidth (high bit rate) can be obtained with LIFI it can accommodate large demands of users in 

terms of information capacity. Moreover, the free space transmission can provide the light power that can be used for other 

purposes, for instance, a remote charger and the internet of things (IoT) applications. In this article, we have modeled the LiFi up-

down link node using the plasmonic island embedded within the closed loop Panda-ring system. By using the selected parameters 

obtained from the graphical method (Opti-wave program), the simulations have shown promising results. By using the MATLAB 

program, the results obtained show that the mobility of the WGM output is  5 x         (    )  . The up-down converter 

link time of  2 fs is achieved after the inline successive pumping power is saturated. By using the throughput port output, the use 

of such a proposed system for a plasmonic op-amp is also possible. 
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