2 research outputs found

    Local convergence of the Levenberg-Marquardt method under H\"{o}lder metric subregularity

    Get PDF
    We describe and analyse Levenberg-Marquardt methods for solving systems of nonlinear equations. More specifically, we propose an adaptive formula for the Levenberg-Marquardt parameter and analyse the local convergence of the method under H\"{o}lder metric subregularity of the function defining the equation and H\"older continuity of its gradient mapping. Further, we analyse the local convergence of the method under the additional assumption that the \L{}ojasiewicz gradient inequality holds. We finally report encouraging numerical results confirming the theoretical findings for the problem of computing moiety conserved steady states in biochemical reaction networks. This problem can be cast as finding a solution of a system of nonlinear equations, where the associated mapping satisfies the \L{}ojasiewicz gradient inequality assumption.Comment: 30 pages, 10 figure

    The Boosted DC Algorithm for Linearly Constrained DC Programming

    No full text
    The Boosted Difference of Convex functions Algorithm (BDCA) has been recently introduced to accelerate the performance of the classical Difference of Convex functions Algorithm (DCA). This acceleration is achieved thanks to an extrapolation step from the point computed by DCA via a line search procedure. In this work, we propose an extension of BDCA that can be applied to difference of convex functions programs with linear constraints, and prove that every cluster point of the sequence generated by this algorithm is a Karush–Kuhn–Tucker point of the problem if the feasible set has a Slater point. When the objective function is quadratic, we prove that any sequence generated by the algorithm is bounded and R-linearly (geometrically) convergent. Finally, we present some numerical experiments where we compare the performance of DCA and BDCA on some challenging problems: to test the copositivity of a given matrix, to solve one-norm and infinity-norm trust-region subproblems, and to solve piecewise quadratic problems with box constraints. Our numerical results demonstrate that this new extension of BDCA outperforms DCA
    corecore