24 research outputs found

    A New Relativistic High Temperature Bose-Einstein Condensation

    Get PDF
    We discuss the properties of an ideal relativistic gas of events possessing Bose-Einstein statistics. We find that the mass spectrum of such a system is bounded by μm2M/μK,\mu \leq m\leq 2M/\mu _K, where μ\mu is the usual chemical potential, MM is an intrinsic dimensional scale parameter for the motion of an event in space-time, and μK\mu _K is an additional mass potential of the ensemble. For the system including both particles and antiparticles, with nonzero chemical potential μ,\mu , the mass spectrum is shown to be bounded by μm2M/μK,|\mu |\leq m\leq 2M/\mu _K, and a special type of high-temperature Bose-Einstein condensation can occur. We study this Bose-Einstein condensation, and show that it corresponds to a phase transition from the sector of continuous relativistic mass distributions to a sector in which the boson mass distribution becomes sharp at a definite mass M/μK.M/\mu _K. This phenomenon provides a mechanism for the mass distribution of the particles to be sharp at some definite value.Comment: Latex, 22 page

    Amazonian forest degradation must be incorporated into the COP26 agenda

    Get PDF
    Nations will reaffirm their commitment to reducing greenhouse gas (GHG) emissions during the 26th United Nations Climate Change Conference (COP26; www.ukcop26.org), in Glasgow, Scotland, in November 2021. Revision of the national commitments will play a key role in defining the future of Earth’s climate. In past conferences, the main target of Amazonian nations was to reduce emissions resulting from land-use change and land management by committing to decrease deforestation rates, a well-known and efficient strategy1,2. However, human-induced forest degradation caused by fires, selective logging, and edge effects can also result in large carbon dioxide (CO2) emissions1,2,3,4,5, which are not yet explicitly reported by Amazonian countries. Despite its considerable impact, forest degradation has been largely overlooked in previous policy discussions5. It is vital that forest degradation is considered in the upcoming COP26 discussions and incorporated into future commitments to reduce GHG emissions

    Vulnerability of Amazonian forests to repeated droughts

    No full text
    Extreme droughts have been recurrent in the Amazon over the past decades, causing socio-economic and environmental impacts. Here, we investigate the vulnerability of Amazonian forests, both undisturbed and human-modified, to repeated droughts. We defined vulnerability as a measure of (i) exposure, which is the degree to which these ecosystems were exposed to droughts, and (ii) its sensitivity, measured as the degree to which the drought has affected remote sensing-derived forest greenness. The exposure was calculated by assessing the meteorological drought, using the standardized precipitation index (SPI) and the maximum cumulative water deficit (MCWD), which is related to vegetation water stress, from 1981 to 2016. The sensitivity was assessed based on the enhanced vegetation index anomalies (AEVI), derived from the newly available Moderate Resolution Imaging Spectroradiometer (MODIS)/Multi-Angle Implementation of Atmospheric Correction algorithm (MAIAC) product, from 2003 to 2016, which is indicative of forest's photosynthetic capacity. We estimated that 46% of the Brazilian Amazon biome was under severe to extreme drought in 2015/2016 as measured by the SPI, compared with 16% and 8% for the 2009/2010 and 2004/2005 droughts, respectively. The most recent drought (2015/2016) affected the largest area since the drought of 1981. Droughts tend to increase the variance of the photosynthetic capacity of Amazonian forests as based on the minimum and maximum AEVI analysis. However, the area showing a reduction in photosynthetic capacity prevails in the signal, reaching more than 400 000 km2 of forests, four orders of magnitude larger than areas with AEVI enhancement. Moreover, the intensity of the negative AEVI steadily increased from 2005 to 2016. These results indicate that during the analysed period drought impacts were being exacerbated through time. Forests in the twenty-first century are becoming more vulnerable to droughts, with larger areas intensively and negatively responding to water shortage in the region.This article is part of a discussion meeting issue 'The impact of the 2015/2016 El Niño on the terrestrial tropical carbon cycle: patterns, mechanisms and implications'. © 2018 The Author(s)
    corecore