9 research outputs found

    Implementation and benchmark of a long-range corrected functional in the density functional based tight-binding method

    Full text link
    Bridging the gap between first principles methods and empirical schemes, the density functional based tight-binding method (DFTB) has become a versatile tool in predictive atomistic simulations over the past years. One of the major restrictions of this method is the limitation to local or gradient corrected exchange-correlation functionals. This excludes the important class of hybrid or long-range corrected functionals, which are advantageous in thermochemistry, as well as in the computation of vibrational, photoelectron and optical spectra. The present work provides a detailed account of the implementation of DFTB for a long-range corrected functional in generalized Kohn-Sham theory. We apply the method to a set of organic molecules and compare ionization potentials and electron affinities with the original DFTB method and higher level theory. The new scheme cures the significant overpolarization in electric fields found for local DFTB, which parallels the functional dependence in first principles density functional theory (DFT). At the same time the computational savings with respect to full DFT calculations are not compromised as evidenced by numerical benchmark data

    Towards a simplified description of thermoelectric materials: Accuracy of approximate density functional theory for phonon dispersions

    Full text link
    We calculate the phonon-dispersion relations of several two-dimensional materials and diamond using the density-functional based tight-binding approach (DFTB). Our goal is to verify if this numerically efficient method provides sufficiently accurate phonon frequencies and group velocities to compute reliable thermoelectric properties. To this end, the results are compared to available DFT results and experimental data. To quantify the accuracy for a given band, a descriptor is introduced that summarizes contributions to the lattice conductivity that are available already in the harmonic approximation. We find that the DFTB predictions depend strongly on the employed repulsive pair-potentials, which are an important prerequisite of this method. For carbon-based materials, accurate pair-potentials are identified and lead to errors of the descriptor that are of the same order as differences between different local and semi-local DFT approaches

    Atomic level modeling of extremely thin silicon-on-insulator MOSFETs including the silicon dioxide: Electronic structure

    Get PDF
    © 1963-2012 IEEE. Ultimate scaling of Si MOSFETs leads to extremely thin and short channels, which are justifiably modeled at the atomic level. Currently, hydrogen passivation of the channel is used in device models, as a compromise between efficiency and accuracy. This paper advances the state of the art by adopting a density-functional tight-binding Hamiltonian, permitting the inclusion of the confining amorphous oxide explicitly in the simulation domain in a way similar to ab initio approaches. Band structure of silicon-on-insulator films of different thicknesses is studied with this method, showing good agreement with the experiment and revealing large quantitative differences in comparison with simulations of H-passivated Si film.published_or_final_versio

    The state of Fortran

    Get PDF
    A community of developers has formed to modernize the Fortran ecosystem. In this article, we describe the high-level features of Fortran that continue to make it a good choice for scientists and engineers in the 21st century. Ongoing efforts include the development of a Fortran standard library and package manager, the fostering of a friendly and welcoming online community, improved compiler support, and language feature development. The lessons learned are common across contemporary programming languages and help reduce the learning curve and increase adoption of Fortran

    Accurate defect levels obtained from the HSE06 range-separated hybrid functional

    No full text
    Defect levels are a problem for standard implementations of density-functional theory and the error also influences the energetics. We demonstrate that the HSE06 functional, which describes the electronic structure of all group-IV semiconductors well (including Ge), gives highly accurate charge transition levels, too, if the defect wave function is host related-independent of localization. The degree of fulfilling the generalized Koopmans theorem shows the reliability of the results and the highest-occupied eigenvalue always seems to give the correct vertical ionization energy.Original Publication:Peter Deak, Balint Aradi, Thomas Frauenheim, Erik Janzén and Adam Gali, Accurate defect levels obtained from the HSE06 range-separated hybrid functional, 2010, PHYSICAL REVIEW B, (81), 15, 153203.http://dx.doi.org/10.1103/PhysRevB.81.153203Copyright: American Physical Societyhttp://www.aps.org

    Accurate defect levels obtained from the HSE06 range-separated hybrid functional

    No full text
    Defect levels are a problem for standard implementations of density-functional theory and the error also influences the energetics. We demonstrate that the HSE06 functional, which describes the electronic structure of all group-IV semiconductors well (including Ge), gives highly accurate charge transition levels, too, if the defect wave function is host related-independent of localization. The degree of fulfilling the generalized Koopmans theorem shows the reliability of the results and the highest-occupied eigenvalue always seems to give the correct vertical ionization energy.Original Publication:Peter Deak, Balint Aradi, Thomas Frauenheim, Erik Janzén and Adam Gali, Accurate defect levels obtained from the HSE06 range-separated hybrid functional, 2010, PHYSICAL REVIEW B, (81), 15, 153203.http://dx.doi.org/10.1103/PhysRevB.81.153203Copyright: American Physical Societyhttp://www.aps.org

    Using DFTB to Model Photocatalytic Anatase-Rutile TiO2 Nanocrystalline Interfaces and Their Band Alignment

    No full text
    Band alignment effects of anatase and rutile nanocrystals in TiO2 powders lead to electron-hole separation, increasing the photocatalytic efficiency of these powders. While size effects and types of possible alignments have been extensively studied, the effect of interface geometries of bonded nanocrystal structures on the alignment is poorly understood. To allow conclusive studies of a vast variety of bonded systems in different orientations, we have developed a new density functional tight-binding parameter set to properly describe quantum confinement in nanocrystals. By applying this set, we found a quantitative influence of the interface structure on the band alignment.Title in WoS: Using DFTB to Model Photocatalytic Anatase-Rutile TiO2 Nanocrystalline Interfaces and Their Band Alignment</p

    DFT Exchange: Sharing Perspectives on the Workhorse of Quantum Chemistry and Materials Science

    No full text
    In this paper, the history, present status, and future of density-functional theory (DFT) is informally reviewed and discussed by 70 workers in the field, including molecular scientists, materials scientists, method developers and practitioners. The format of the paper is that of a roundtable discussion, in which the participants express and exchange views on DFT in the form of 300 individual contributions, formulated as responses to a preset list of 26 questions. Supported by a bibliography of 776 entries, the paper represents a broad snapshot of DFT, anno 2022
    corecore