7 research outputs found

    Space-charge limited conduction in epitaxial chromia films grown on elemental and oxide-based metallic substrates

    Get PDF
    We study temperature dependent (200 – 400 K) dielectric current leakage in high-quality, epitaxial chromia films, synthesized on various conductive substrates (Pd, Pt and V2O3). We find that trap-assisted space-charge limited conduction is the dominant source of electrical leakage in the films, and that the density and distribution of charge traps within them is strongly dependent upon the choice of the underlying substrate. Pd-based chromia is found to exhibit leakage consistent with the presence of deep, discrete traps, a characteristic that is related to the known properties of twinning defects in the material. The Pt- and V2O3-based films, in contrast, show behavior typical of insulators with shallow, exponentially-distributed traps. The highest resistivity is obtained for chromia fabricated on V2O3substrates, consistent with a lower total trap density in these films. Our studies suggest that chromia thin films formed on V2O3 substrates are a promising candidate for next-generation spintronics

    Evaluating the Sources of Graphene's Resistivity Using Differential Conductance

    No full text
    We explore the contributions to the electrical resistance of monolayer and bilayer graphene, revealing transitions between different regimes of charge carrier scattering. In monolayer graphene at low densities, a nonmonotonic variation of the resistance is observed as a function of temperature. Such behaviour is consistent with the influence of scattering from screened Coulomb impurities. At higher densities, the resistance instead varies in a manner consistent with the influence of scattering from acoustic and optical phonons. The crossover from phonon-, to charged-impurity, limited conduction occurs once the concentration of gate-induced carriers is reduced below that of the residual carriers. In bilayer graphene, the resistance exhibits a monotonic decrease with increasing temperature for all densities, with the importance of short-range impurity scattering resulting in a "universal" density-independent ( scaled) conductivity at high densities. At lower densities, the conductivity deviates from this universal curve, pointing to the importance of thermal activation of carriers out of charge puddles. These various assignments, in both systems, are made possible by an approach of "differential-conductance mapping", which allows us to suppress quantum corrections to reveal the underlying mechanisms governing the resistivity

    Universal scaling of weak localization in graphene due to bias-induced dispersion decoherence

    No full text
    The differential conductance of graphene is shown to exhibit a zero-bias anomaly at low temperatures, arising from a suppression of the quantum corrections due to weak localization and electron interactions. A simple rescaling of these data, free of any adjustable parameters, shows that this anomaly exhibits a universal, temperature- (T) independent form. According to this, the differential conductance is approximately constant at small voltages (V < k(B)T/e), while at larger voltages it increases logarithmically with the applied bias. For theoretical insight into the origins of this behaviour, which is inconsistent with electron heating, we formulate a model for weak-localization in the presence of nonequilibrium transport. According to this model, the applied voltage causes unavoidable dispersion decoherence, which arises as diffusing electron partial waves, with a spread of energies defined by the value of the applied voltage, gradually decohere with one another as they diffuse through the system. The decoherence yields a universal scaling of the conductance as a function of eV/k(B)T, with a logarithmic variation for eV/k(B)T > 1, variations in accordance with the results of experiment. Our theoretical description of nonequilibrium transport in the presence of this source of decoherence exhibits strong similarities with the results of experiment, including the aforementioned rescaling of the conductance and its logarithmic variation as a function of the applied voltage

    Remote Mesoscopic Signatures of Induced Magnetic Texture in Graphene

    Get PDF
    Mesoscopic conductance fluctuations are a ubiquitous signature of phase-coherent transport in small conductors, exhibiting universal character independent of system details. In this Letter, however, we demonstrate a pronounced breakdown of this universality, due to the interplay of local and remote phenomena in transport. Our experiments are performed in a graphene-based interaction-detection geometry, in which an artificial magnetic texture is induced in the graphene layer by covering a portion of it with a micromagnet. When probing conduction at some distance from this region, the strong influence of remote factors is manifested through the appearance of giant conductance fluctuations, with amplitude much larger than e(2)/h. This violation of one of the fundamental tenets of mesoscopic physics dramatically demonstrates how local considerations can be overwhelmed by remote signatures in phase-coherent conductors
    corecore