8,027 research outputs found
Gender gap in the ERASMUS mobility program
Studying abroad has become very popular among students. The ERASMUS mobility
program is one of the largest international student exchange programs in the
world, which has supported already more than three million participants since
1987. We analyzed the mobility pattern within this program in 2011-12 and found
a gender gap across countries and subject areas. Namely, for almost all
participating countries, female students are over-represented in the ERASMUS
program when compared to the entire population of tertiary students. The same
tendency is observed across different subject areas. We also found a gender
asymmetry in the geographical distribution of hosting institutions, with a bias
of male students in Scandinavian countries. However, a detailed analysis
reveals that this latter asymmetry is rather driven by subject and consistent
with the distribution of gender ratios among subject areas
Finding the optimal nets for self-folding Kirigami
Three-dimensional shells can be synthesized from the spontaneous self-folding
of two-dimensional templates of interconnected panels, called nets. However,
some nets are more likely to self-fold into the desired shell under random
movements. The optimal nets are the ones that maximize the number of vertex
connections, i.e., vertices that have only two of its faces cut away from each
other in the net. Previous methods for finding such nets are based on random
search and thus do not guarantee the optimal solution. Here, we propose a
deterministic procedure. We map the connectivity of the shell into a shell
graph, where the nodes and links of the graph represent the vertices and edges
of the shell, respectively. Identifying the nets that maximize the number of
vertex connections corresponds to finding the set of maximum leaf spanning
trees of the shell graph. This method allows not only to design the
self-assembly of much larger shell structures but also to apply additional
design criteria, as a complete catalog of the maximum leaf spanning trees is
obtained.Comment: 6 pages, 5 figures, Supplemental Material, Source Cod
Effect of particle polydispersity on the irreversible adsorption of fine particles on patterned substrates
We performed extensive Monte Carlo simulations of the irreversible adsorption
of polydispersed disks inside the cells of a patterned substrate. The model
captures relevant features of the irreversible adsorption of spherical
colloidal particles on patterned substrates. The pattern consists of (equal)
square cells, where adsorption can take place, centered at the vertices of a
square lattice. Two independent, dimensionless parameters are required to
control the geometry of the pattern, namely, the cell size and cell-cell
distance, measured in terms of the average particle diameter. However, to
describe the phase diagram, two additional dimensionless parameters, the
minimum and maximum particle radii are also required. We find that the
transition between any two adjacent regions of the phase diagram solely depends
on the largest and smallest particle sizes, but not on the shape of the
distribution function of the radii. We consider size dispersions up-to 20% of
the average radius using a physically motivated truncated Gaussian-size
distribution, and focus on the regime where adsorbing particles do not interact
with those previously adsorbed on neighboring cells to characterize the jammed
state structure. The study generalizes previous exact relations on monodisperse
particles to account for size dispersion. Due to the presence of the pattern,
the coverage shows a non-monotonic dependence on the cell size. The pattern
also affects the radius of adsorbed particles, where one observes preferential
adsorption of smaller radii particularly at high polydispersity.Comment: 9 pages, 5 figure
Non-hexagonal-ring defects and structures induced by strain in graphene and in functionalized graphene
We perform {\textit ab initio} calculations for the strain-induced formation
of non-hexagonal-ring defects in graphene, graphane (planar CH), and graphenol
(planar COH). We find that the simplest of such topological defects, the
Stone-Wales defect, acts as a seed for strain-induced dissociation and
multiplication of topological defects. Through the application of inhomogeneous
deformations to graphene, graphane and graphenol with initially small
concentrations of pentagonal and heptagonal rings, we obtain several novel
stable structures that possess, at the same time, large concentrations of
non-hexagonal rings (from fourfold to elevenfold) and small formation energies
Invasion Percolation Between two Sites
We investigate the process of invasion percolation between two sites
(injection and extraction sites) separated by a distance r in two-dimensional
lattices of size L. Our results for the non-trapping invasion percolation model
indicate that the statistics of the mass of invaded clusters is significantly
dependent on the local occupation probability (pressure) Pe at the extraction
site. For Pe=0, we show that the mass distribution of invaded clusters P(M)
follows a power-law P(M) ~ M^{-\alpha} for intermediate values of the mass M,
with an exponent \alpha=1.39. When the local pressure is set to Pe=Pc, where Pc
corresponds to the site percolation threshold of the lattice topology, the
distribution P(M) still displays a scaling region, but with an exponent
\alpha=1.02. This last behavior is consistent with previous results for the
cluster statistics in standard percolation. In spite of these discrepancies,
the results of our simulations indicate that the fractal dimension of the
invaded cluster does not depends significantly on the local pressure Pe and it
is consistent with the fractal dimension values reported for standard invasion
percolation. Finally, we perform extensive numerical simulations to determine
the effect of the lattice borders on the statistics of the invaded clusters and
also to characterize the self-organized critical behavior of the invasion
percolation process.Comment: 7 pages, 11 figures, submited for PR
- …