630 research outputs found

    Genetic and environmental variation impact transferability of polygenic risk scores

    Get PDF
    Even when polygenic risk scores (PRSs) are trained in African ancestral populations, Kamiza and colleagues showed that genetic and environmental variation within sub-Saharan African populations impacts prediction performance, highlighting the challenges of clinical implementation of PRSs for risk assessment

    Numerical study on the performance of improved masonry-to-timber connections in traditional masonry buildings

    Get PDF
    This paper deals with a numerical study on the structural performance of masonry-to-timber connections in ancient buildings. The work is supported on an experimental campaign carried out at University of Minho, which aims at characterising a strengthening solution based on the use of injected anchors for the improvement of the connection between masonry and timber frame walls. The numerical study resorts to a detailed 3D finite element model, which reproduces the experimental test setup and proce- dure. The modelling approach adopted allows an accurate characterisation of the behaviour of all struc- tural elements, in terms of stress field and displacement distribution. The 3D model was validated against the available experimental results, which was then used to perform parametric analyses in order to eval- uate the influence of key parameters. Finally, simplified analytical approaches to estimate the strength capacity of injected anchors on masonry are presented and discussed.This work was partly funded by Project FP7-ENV-2009-1244123-NIKER. The first author also acknowledges the financial support from the Portuguese Science Foundation (Fundacao de Ciencia e Tecnologia, FCT), through Grant SFRH/BD/71599/2010

    Seismic assessment of St. James church by means of pushover analysis : before and after the New Zealand earthquake

    Get PDF
    The paper presents a numerical study for the seismic assessment of the St James Church in Christchurch, New Zealand affected by the recent 2011 earthquake and subsequent aftershocks. The structural behaviour of the Church has been evaluated using the finite element modelling technique, in which the nonlinear behaviour of masonry has been taken into account by proper constitutive assumptions. Two numerical models were constructed, one incorporating the existing structural damage and the other considering the intact structure. The validation of the numerical models was achieved by the calibration of the damaged model according to dynamic identification tests carried out in situ after the earthquake. Non-linear pushover analyses were carried out on both principal directions demonstrating that, as a result of the seismic action, the Church can no longer be considered safe. Pushover analysis results of the undamaged model show reasonable agreement with the visual inspection performed in situ, which further validates the model used. Finally, limit analysis using macro-block analysis was also carried out to validate the main local collapse mechanisms of the Church.(undefined

    In-plane shear behaviour of stone masonry piers: A numerical study

    Get PDF
    Post-earthquake investigations have shown that if out-of-plane mechanisms are prevented, the seismic performance of a masonry building depends mainly on the in- plane capacity of spandrels beams and especially piers. For this reason, several investigations were done in the past to characterize the in-plane behaviour of masonry walls. A large majority of these studies consist of experimental programmes, testing the lateral response of piers. Nevertheless, very few studies focused on carrying out numerical studies and their potential was disregarded. A numerical investigation to study the in-plane behaviour of masonry piers was carried out, based on an experimental campaign performed on stone masonry piers. The experimental programme included masonry piers with two slenderness ratios subjected to two distinct levels of axial compression. Finite element models were built on the advanced software, DIANA, and according to the experimental setup test of each wall, with the aim of simulating the experimental tests. Afterwards, the non-linear numerical simulations were compared against the in-plane cyclic test results. The calibration and validation of the numerical models according to the experimental results was conducted. The results of the non-linear analyses carried out on the validated models are presented and discussed. Good agreement between experimental and numerical results was achieved both considering the force- displacement behaviour and failure mechanisms. The numerical strategy can be seen as a complementary way to study masonry piers, particularly useful for further parametrical studies.The first author acknowledges the financial support from the Portuguese Science Foundation (Fundação de Ciência e Tecnologia, FCT) through grant SFRH/BD/71599/2010

    Modelling of the in-plane behaviour of stone masonry panels

    Get PDF
    Stone masonrywalls are the most relevant structural element in the seismic response of a masonry building. Once the out-of-plane mechanism are adequately prevented, the seismic response of a building depends on the in-plane strength capacity of its walls. This paper presents a discussion on the in-plane behaviour of masonry panels with different slenderness ratios and distinct levels of compression load, subjected to shear loading, using advanced numerical simulations. The numerical study is based on an experimental campaign performed at the University of Pavia on stone masonry piers. The calibrated models were also used to carry out parametric analysis varying the geometric wall configuration and the pre-compression level. Distinct walls subjected to different stress levelswere assessed and the influence of these parameters on the in-plane behaviour is discussed.The second author would like to express her gratitude to the National Foundation for Science and Technology (FCT) for the PhD grant SFRH/BD/71599/2010. This work was supported by FCT, within ISISE, project UID/ECI/04029/2013

    Influence of the microstructure on the creep behaviour of Tin-Silver-Copper solder

    Get PDF
    A common failure mode of electronic printed circuit boards (PCB’s) is the appearance of cold solder joints between the component and PCB, during product life. This phenomenon is related to solder joint fatigue and is attributed mainly to the mismatch of the coefficients of thermal expansion (CTE) of component-solder-PCB assembly. With today’s solder joint thickness decreasing and increasing working temperatures, among others, the stresses and strains due to temperature changes are growing, leading to limited fatigue life of the products. As fatigue life decreases with increasing plastic strain, creep occurrence should have significant impact, especially during thermal cycles and, thus, should be studied. Through the cooling phase, on the production of PCB assembly’s by the reflow technology, the hoven atmosphere temperature is adjusted in order to control the cooling rate. Narrow criteria is used so as to control the inter-metallic compounds (IMC) thickness, PCB assembly distortion and defects due to thermal shock. The cooling rate also affects solder microstructure, which has direct impact on creep behaviour and, thus, on the soldered joint reliability. In this paper, a dynamic mechanical analyser (DMA) is used to study the influence of the solder cooling rate on its creep behaviour. SAC405 samples with two distinct cooling rates were produced: inside a hoven cooling and by water quenching. Creep tests were made on three-point-bending clamp configuration, isothermally at 25 °C, 50 °C and 75 °C and under three separate levels of stress, 3, 5 and 9 MPa. The results show that creep behaviour has a noticeable cooling rate dependence. It was also noticed that creep propensity is exacerbated by the temperature at which stresses are applied, especially for the slower cooling rates. Creep mechanisms were related to the solder microstructural constituents, namely by the amount of phases ant their morphology.The authors would like to express his acknowledgments for the support given by the Portugal Incentive System for Research and Technological Development. Project in co-promotion This research is sponsored by the Portugal Incentive System for Research and Technological Development. This work is supported by: European Structural and Investment Funds in the FEDER component, through the Operational Competitiveness and Internationalization Programme (COMPETE 2020) [Project nº 002814; Funding Reference: POCI-01-0247-FEDER-002814]. This work was financed by FCT, under the Strategic Project UID/SEM/04077/2013; PEst2015-2020 with the reference UID/CEC/00319/2013 and UID/FIS/04650/2013

    In vitro digestion and storage stability of riboflavin-loaded WPI nanostructures towards foods fortification

    Get PDF
    The consumption of fortified foods incorporating bioactive compounds as a way to promote a healthier lifestyle has gain particular interest in research community and food industry. However, due to their chemical instabilities, bioactive compounds bioavailability can be compromised during post-processing, storage, and digestion. Their encapsulation/association in nanostructures offers a good strategy to enhance bioactive compounds bioavailability. Whey protein isolate (WPI) nanostructures were developed to associate riboflavin (Rb), aiming at its incorporation in foods, and their storage stability and digestion behavior were evaluated. Rb bioaccessibility was determined through spectrofluorimetry by quantifying Rb concentration in the soluble fraction after digestion, that was performed using INFOGEST static in vitro gastrointestinal model. Also, storage stability was evaluated by assessing nanostructures size and polydispersity (PdI) through dynamic light scattering, over 45 days at 4 °C and 25 °C. Rb-loaded WPI nanostructures showed no statistically significant differences in terms of size (ca. 120 nm) and PdI (0.2) during storage period, at both temperatures tested. Rb showed a bioaccessibility of 56 % when associated in WPI nanostructures, enhancing Rb bioaccessibility. These results contribute to improve the knowledge on the use of WPI nanostructures as effective encapsulating systems to augment hydrophilic bioactive compounds bioaccessibility, towards food fortification.info:eu-repo/semantics/publishedVersio

    FlowDiv: A new pipeline for analyzing flow cytometric diversity

    Get PDF
    Background: Flow cytometry (FCM) is one of the most commonly used technologies for analysis of numerous biological systems at the cellular level, from cancer cells to microbial communities. Its high potential and wide applicability led to the development of various analytical protocols, which are often not interchangeable between fields of expertise. Environmental science in particular faces difficulty in adapting to non-specific protocols, mainly because of the highly heterogeneous nature of environmental samples. This variety, although it is intrinsic to environmental studies, makes it difficult to adjust analytical protocols to maintain both mathematical formalism and comprehensible biological interpretations, principally for questions that rely on the evaluation of differences between cytograms, an approach also termed cytometric diversity. Despite the availability of promising bioinformatic tools conceived for or adapted to cytometric diversity, most of them still cannot deal with common technical issues such as the integration of differently acquired datasets, the optimal number of bins, and the effective correlation of bins to previously known cytometric populations. Results: To address these and other questions, we have developed flowDiv, an R language pipeline for analysis of environmental flow cytometry data. Here, we present the rationale for flowDiv and apply the method to a real dataset from 31 freshwater lakes in Patagonia, Argentina, to reveal significant aspects of their cytometric diversities. Conclusions: flowDiv provides a rather intuitive way of proceeding with FCM analysis, as it combines formal mathematical solutions and biological rationales in an intuitive framework specifically designed to explore cytometric diversity.Fil: Wanderley, Bruno M. S.. Universidade Federal do Rio Grande do Norte; BrasilFil: Araújo, Daniel S.. Universidade Federal do Rio Grande do Norte; BrasilFil: Quiroga, María Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); ArgentinaFil: Amado, André M.. Universidade Federal do Rio Grande do Norte; Brasil. Universidade Federal de Juiz de Fora; BrasilFil: Neto, Adrião D. D.. Universidade Federal do Rio Grande do Norte; BrasilFil: Sarmento, Hugo. Universidade Federal do São Carlos; BrasilFil: Metz, Sebastián Darío. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); ArgentinaFil: Unrein, Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); Argentin

    Tests of Bell inequality with arbitrarily low photodetection efficiency and homodyne measurements

    Full text link
    We show that hybrid local measurements combining homodyne measurements and photodetection provide violations of a Bell inequality with arbitrarily low photodetection efficiency. This is shown in two different scenarios: when one part receives an atom entangled to the field mode to be measured by the other part and when both parts make similar photonic measurements. Our findings promote the hybrid measurement scenario as a candidate for loophole-free Bell tests beyond previous expectations.Comment: 6 pages, 2 figures. Published versio
    corecore