45 research outputs found

    Immunoinformatics design of multivalent epitope vaccine against monkeypox virus and its variants using membrane-bound, enveloped, and extracellular proteins as targets

    Get PDF
    IntroductionThe current monkeypox (MPX) outbreak, caused by the monkeypox virus (MPXV), has turned into a global concern, with over 59,000 infection cases and 23 deaths worldwide.ObjectivesHerein, we aimed to exploit robust immunoinformatics approach, targeting membrane-bound, enveloped, and extracellular proteins of MPXV to formulate a chimeric antigen. Such a strategy could similarly be applied for identifying immunodominant epitopes and designing multi-epitope vaccine ensembles in other pathogens responsible for chronic pathologies that are difficult to intervene against.MethodsA reverse vaccinology pipeline was used to select 11 potential vaccine candidates, which were screened and mapped to predict immunodominant B-cell and T-cell epitopes. The finalized epitopes were merged with the aid of suitable linkers, an adjuvant (Resuscitation-promoting factor), a PADRE sequence (13 aa), and an HIV TAT sequence (11 aa) to formulate a multivalent epitope vaccine. Bioinformatics tools were employed to carry out codon adaptation and computational cloning. The tertiary structure of the chimeric vaccine construct was modeled via I-TASSER, and its interaction with Toll-like receptor 4 (TLR4) was evaluated using molecular docking and molecular dynamics simulation. C-ImmSim server was implemented to examine the immune response against the designed multi-epitope antigen.Results and discussionThe designed chimeric vaccine construct included 21 immunodominant epitopes (six B-cell, eight cytotoxic T lymphocyte, and seven helper T-lymphocyte) and is predicted non-allergen, antigenic, soluble, with suitable physicochemical features, that can promote cross-protection among the MPXV strains. The selected epitopes indicated a wide global population coverage (93.62%). Most finalized epitopes have 70%–100% sequence similarity with the experimentally validated immune epitopes of the vaccinia virus, which can be helpful in the speedy progression of vaccine design. Lastly, molecular docking and molecular dynamics simulation computed stable and energetically favourable interaction between the putative antigen and TLR4.ConclusionOur results show that the multi-epitope vaccine might elicit cellular and humoral immune responses and could be a potential vaccine candidate against the MPXV infection. Further experimental testing of the proposed vaccine is warranted to validate its safety and efficacy profile

    Untypeable hepatitis C virus subtypes in Pakistan: A neglected section

    Get PDF
    Diagnostically untypeable subtypes contribute a considerable percent of hepatitis C virus (HCV) subtypes in Pakistan. In the present study, chronically infected HCV patients with known viremia were subjected to HCV genotyping. Among the total retrieved samples, 92.7% (64/69) were found typeable while 7.24% (5/69) were diagnostically untypeable. In conclusion, the presence of large number of untypeable HCV subtypes emphasizes the need of an updated type-specific genotyping assay and consideration of primers for proportionally rare subtypes to minimize the number of untypeable HCV subtypes

    Prevalence of active HCV infection among the blood donors of Khyber Pakhtunkwa and FATA region of Pakistan and evaluation of the screening tests for anti-HCV

    Get PDF
    Hepatitis C is a fatal liver disease caused by the hepatitis C virus. In this study, blood donors, from various districts of the KPK province and the federally administered tribal area (FATA) of Pakistan were tested for anti-HCV antibodies and HCV RNA by ICT (Immuno-chromatographic test), ELISA and RT-PCR. Out of the 7148 blood donors, 224 (3.13%) were positive for anti-HCV antibodies by ICT, 135 (1.89%) by ELISA while 118 (1.65%) blood donors had active HCV infection as detected by RT-PCR. We suggest that ELISA should be used for anti-HCV screening in public sector hospitals and health care units

    Sustainability of phytoremediation: Post-harvest stratagems and economic opportunities for the produced metals contaminated biomass

    Get PDF
    Heavy metals (HMs) are indestructible and non-biodegradable. Phytoremediation presents an opportunity to transfer HMs from environmental matrices into plants, making it easy to translocate from one place to another. The ornate features of HMs’ phytoremediation are biophilia and carbon neutrality, compared to the physical and chemical remediation methods. Some recent studies related to LCA also support that phytoremediation is technically more sustainable than competing technologies. However, one major post-application challenge associated with HMs phytoremediation is properly managing HMs contaminated biomass generated. Such a yield presents the problem of reintroducing HMs into the environment due to natural decomposition and release of plant sap from the harvested biomass. The transportation of high yields can also make phytoremediation economically inviable. This review presents the design of a sustainable phytoremediation strategy using an everevolving life cycle assessment tool. This review also discusses possible post-phytoremediation biomass management strategies for the HMs contaminated biomass management. These strategies include composting, leachate compaction, gasification, pyrolysis, torrefaction, and metal recovery. Further, the commercial outlook for properly utilizing HMs contaminated biomass was presented.Authors apologize to all authors whose research has supported this area of interest, and their relevant findings were left out during the preparation of this review. Funding sources: This work was financed by the GREENER project of the European Union’s Horizon 2020 research and innovation program (Grant Agreement No. 826312). It has also received funds from Board of Education of Junta de Castilla y Leon ´ and the European Social Fund

    Limited Phosphorous Supply Improved Lipid Content of Chlorella vulgaris That Increased Phenol and 2-Chlorophenol Adsorption from Contaminated Water with Acid Treatment

    Get PDF
    Phenolic compounds are toxic and ominously present in industrial effluents, which can end up in water bodies, causing potential damage to living organisms. This study employed the dried biomass of freshwater green microalgae Chlorella vulgaris to remove phenol and 2-chlorophenol from an aqueous environment. C. vulgaris was grown under different phosphorus- (P) starved conditions, and biomass was treated with sulfuric acid. It was observed that reducing the P level enhanced the lipid content by 7.8 times while decreasing protein by 7.2 times. P-starved C. vulgaris dried biomass removed phenol and 2-chlorophenol by 69 and 57%, respectively, after 180 min from the contaminated water. Acid-treated P-starved C. vulgaris dried biomass removed phenol and 2-chlorophenol by 77 and 75%, respectively, after 180 min. Thus, an economical and eco-friendly P-starved and acid treated C. vulgaris biomass has better potential to remove phenol and 2-chlorophenol from contaminated ground water and industrial wastewater.This research has been funded by Scientific Research Deanship at University of Ha’il—Saudi Arabia through project number RG-21 105

    Duplex PCR assay for the detection of avian adeno virus and chicken anemia virus prevalent in Pakistan

    Get PDF
    Avian Adeno viruses and Chicken Anemia Viruses cause serious economic losses to the poultry industry of Pakistan each year. Timely and efficient diagnosis of the viruses is needed in order to practice prevention and control strategies. In the first part of this study, we investigated broilers, breeder and Layer stocks for morbidity and mortality rates due to AAV and CAV infections and any co-infections by examining signs and symptoms typical of their infestation or post mortem examination. In the second part of the study, we developed a duplex PCR assay for the detection of AAV and CAV which is capable to simultaneously detect both the viral types prevalent in Pakistan with high sensitivity and 100% specificity

    Physio-Biochemical Integrators and Transcriptome Analysis Reveal Nano-Elicitation Associated Response during <i>Dendrocalamus asper</i> (Schult. and Schult. F.) Backer ex K. Heyne Micropropagation

    No full text
    Bamboos are perennial, arborescent, monocarpic and industrially important non-timber plants. They are important for various purposes, such as carbon sequestration, biodiversity support, construction, and food and fiber production. However, traditional vegetative propagation is insufficient for bamboo multiplication. Moreover, little is known about the mechanism of gold nanoparticles (AuNPs) in vitro proliferation and regulation of physiological and biochemical properties. In this study, we investigated the impacts of citrate and cetyltrimethylammonium bromide (CTAB) coated AuNPs on in vitro proliferation, photosynthetic pigment content and antioxidant potential of Dendrocalamus asper (Schult. and Schult. F.) Backer ex K. Heyne. Various morpho-physiological and biochemical parameters were differentially affected along the citrate- and CTAB-coated AuNPs concentration gradients (200–600 µM). In vitro shoot proliferation, photosynthetic pigment content and antioxidant activities were higher in D. asper grown on Murashige and Skoog medium supplemented with 2 mg·L−1 benzyladenine and 400 µM citrate-coated AuNPs than in those grown on Murashige and Skoog medium supplemented with 600 µM CTAB- coated AuNPs. Identification of genes regulating in vitro D. asper proliferation will help understand the molecular regulation of AuNPs-mediated elicitation for modulating various physiological and biochemical activities during micropropagation. Gene Ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway analyses identified differentially expressed genes associated with in vitro modulation of AuNPs-regulated biological processes and molecular functions. The findings of this study provide new insight into AuNPs-mediated elicitation of in vitro mass scale bamboo propagation
    corecore