102 research outputs found

    A Large, Severely Obstructive, Calcified Mass in the Midsegment of Aortic Arch.

    Get PDF
    Severe obstructive lesions in the aortic arch are rare. Crossing such lesions poses additional challenges in patients who require cardiac catheterizations. Oftentimes, specialized catheters are required to negotiate the lesion. Herein, we are reporting a series of case images that illustrate a severe lesion in the aortic arch during coronary angiography

    Harmful and beneficial aspects of Parthenium hysterophorus: an update

    Get PDF
    Parthenium hysterophorus is a noxious weed in America, Asia, Africa and Australia. This weed is considered to be a cause of allergic respiratory problems, contact dermatitis, mutagenicity in human and livestock. Crop production is drastically reduced owing to its allelopathy. Also aggressive dominance of this weed threatens biodiversity. Eradication of P. hysterophorus by burning, chemical herbicides, eucalyptus oil and biological control by leaf-feeding beetle, stem-galling moth, stem-boring weevil and fungi have been carried out with variable degrees of success. Recently many innovative uses of this hitherto notorious plant have been discovered. Parthenium hysterophorus confers many health benefits, viz remedy for skin inflammation, rheumatic pain, diarrhoea, urinary tract infections, dysentery, malaria and neuralgia. Its prospect as nano-medicine is being carried out with some preliminary success so far. Removal of heavy metals and dye from the environment, eradication of aquatic weeds, use as substrate for commercial enzyme production, additives in cattle manure for biogas production, as biopesticide, as green manure and compost are to name a few of some other potentials. The active compounds responsible for hazardous properties have been summarized. The aim of this review article is to explore the problem P. hysterophorus poses as a weed, the effective control measures that can be implemented as well as to unravel the latent beneficial prospects of this weed

    Identifying and Tuning the In Situ Oxygen-Rich Surface of Molybdenum Nitride Electrocatalysts for Oxygen Reduction

    Get PDF
    Rigorous in situ studies of electrocatalysts are required to enable the design of higher performing materials. Nonplatinum group metals for oxygen reduction reaction (ORR) catalysis containing light elements such as O, N, and C are known to be susceptible to both ex situ and in situ oxidation, leading to challenges associated with ex situ characterization methods. We have previously shown that the bulk O content plays an important role in the activity and selectivity of Mo–N catalysts, but further understanding of the role of composition and morphological changes at the surface is needed. Here, we report the measurement of in situ surface changes to a molybdenum nitride (MoN) thin film under ORR conditions using grazing incidence X-ray absorption and reflectivity. We show that the half-wave potential of MoN can be improved by ∼90 mV by potential conditioning up to 0.8 V versus RHE. Utilizing electrochemical analysis, dissolution monitoring, and surface-sensitive X-ray techniques, we show that under moderate polarization (0.3–0.7 V vs RHE) there is local ligand distortion, O incorporation, and amorphization of the MoN surface, without changes in roughness. Furthermore, with a controlled potential hold procedure, we show that the surface changes concurrent with potential conditioning are stable under ORR relevant potentials. Conversely, at higher potentials (≥0.8 V vs RHE), the film incorporates O, dissolves, and roughens, suggesting that in this higher potential regime, the performance enhancements are due to increased access to active sites. Density functional theory calculations and Pourbaix analysis provide insights into film stability and O incorporation as a function of potential. These findings coupled with in situ electrochemical surface-sensitive X-ray techniques demonstrate an approach to studying nontraditional surfaces in which we can leverage our understanding of surface dynamics to improve performance with the rational, in situ tuning of active sites

    Nitride or Oxynitride? Elucidating the Composition–Activity Relationships in Molybdenum Nitride Electrocatalysts for the Oxygen Reduction Reaction

    Get PDF
    Molybdenum nitride (Mo−N) catalysts have shown promising activity and stability for the oxygen reduction reaction (ORR) in acid. However, the effect of oxygen (O) incorporation (from synthesis, catalysis, or exposure to air) on their activity remains elusive. Here, we use reactive sputtering to synthesize three compositions of thin-film catalysts and use extensive materials characterization to investigate the depth-dependent structure and incorporated O. We show that the as-deposited Mo−N films are highly oxidized both at the surface (>30% O) and in the bulk (3− 21% O) and that the ORR performance is strongly correlated with the bulk structure and composition. Activity for 4e− ORR is highest for compositions with the highest N/O and N/Mo ratio. Furthermore, H2O2 production for the films with moderate O content is comparable to or higher than the most H2O2-selective nonprecious metal catalysts in acidic electrolyte, on a moles per mass or surface area of catalyst basis. Density functional theory provides insight into the energetics of O incorporation and vacancy formation, and we hypothesize that activity trends with O/N ratios can be traced to the varying crystallite phases and their interactions with ORR adsorbates. This work demonstrates the prevalence and significance of O in metal nitride electrocatalysts and motivates further investigation into the role of O in other nonprecious metal materials

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Antitumor Activity of Noscapine in Combination with Doxorubicin in Triple Negative Breast Cancer

    Get PDF
    The aim of this study was to investigate the anticancer activity and mechanism of action of Noscapine alone and in combination with Doxorubicin against triple negative breast cancer (TNBC).TNBC cells were pretreated with Noscapine or Doxorubicin or combination and combination index values were calculated using isobolographic method. Apoptosis was assessed by TUNEL staining. Female athymic Nu/nu mice were xenografted with MDA-MB-231 cells and the efficacy of Noscapine, Doxorubicin and combination was determined. Protein expression, immunohistochemical staining were evaluated in harvested tumor tissues. values of 36.16±3.76 and 42.7±4.3 µM respectively. The CI values (<0.59) were suggestive of strong synergistic interaction between Noscapine and Doxorubicin and combination treatment showed significant increase in apoptotic cells. Noscapine showed dose dependent reduction in the tumor volumes at a dose of 150–550 mg/kg/day compared to controls. Noscapine (300 mg/kg), Doxorubicin (1.5 mg/kg) and combination treatment reduced tumor volume by 39.4±5.8, 34.2±5.7 and 82.9±4.5 percent respectively and showed decreased expression of NF-KB pathway proteins, VEGF, cell survival, and increased expression of apoptotic and growth inhibitory proteins compared to single-agent treatment and control groups.Noscapine potentiated the anticancer activity of Doxorubicin in a synergistic manner against TNBC tumors via inactivation of NF-KB and anti-angiogenic pathways while stimulating apoptosis. These findings suggest potential benefit for use of oral Noscapine and Doxorubicin combination therapy for treatment of more aggressive TNBC

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment
    corecore