65 research outputs found

    Melarsoprol cyclodextrin inclusion complexes as promising oral candidates for the treatment of human African trypanosomiasis

    Get PDF
    Human African trypanosomiasis (HAT), or sleeping sickness, results from infection with the protozoan parasites <i>Trypanosoma brucei</i> (<i>T.b.</i>) <i>gambiense</i> or <i>T.b.rhodesiense</i> and is invariably fatal if untreated. There are 60 million people at risk from the disease throughout sub-Saharan Africa. The infection progresses from the haemolymphatic stage where parasites invade the blood, lymphatics and peripheral organs, to the late encephalitic stage where they enter the central nervous system (CNS) to cause serious neurological disease. The trivalent arsenical drug melarsoprol (Arsobal) is the only currently available treatment for CNS-stage <i>T.b.rhodesiense</i> infection. However, it must be administered intravenously due to the presence of propylene glycol solvent and is associated with numerous adverse reactions. A severe post-treatment reactive encephalopathy occurs in about 10% of treated patients, half of whom die. Thus melarsoprol kills 5% of all patients receiving it. Cyclodextrins have been used to improve the solubility and reduce the toxicity of a wide variety of drugs. We therefore investigated two melarsoprol cyclodextrin inclusion complexes; melarsoprol hydroxypropyl-͎-cyclodextrin and melarsoprol randomly-methylated-β-cyclodextrin. We found that these compounds retain trypanocidal properties <i>in vitro</i> and cure CNS-stage murine infections when delivered orally, once per day for 7-days, at a dosage of 0.05 mmol/kg. No overt signs of toxicity were detected. Parasite load within the brain was rapidly reduced following treatment onset and magnetic resonance imaging showed restoration of normal blood-brain barrier integrity on completion of chemotherapy. These findings strongly suggest that complexed melarsoprol could be employed as an oral treatment for CNS-stage HAT, delivering considerable improvements over current parenteral chemotherapy

    A Concomitant Muscle Injury Does Not Worsen Traumatic Brain Injury Outcomes in Mice

    Get PDF
    Traumatic brain injury (TBI) often involves multitrauma in which concurrent extracranial injury occurs. We previously demonstrated that a long bone fracture exacerbates neuroinflammation and functional outcomes in mice given a TBI. Whether other forms of concomitant peripheral trauma that are common in the TBI setting, such as skeletal muscle injury, have similar effects is unknown. As such, here we developed a novel mouse multitrauma model by combining a closed-skull TBI with a cardiotoxin (CTX)-induced muscle injury to investigate whether muscle injury affects TBI outcomes. Adult male mice were assigned to four groups: sham-TBI + sham-muscle injury (SHAM); sham-TBI + CTX-muscle injury (CTX); TBI + sham-muscle injury (TBI); TBI + CTX-muscle injury (MULTI). Some mice were euthanized at 24 h post-injury to assess neuroinflammation and cerebral edema. The remaining mice underwent behavioral testing after a 30-day recovery period, and were euthanized at 35 days post-injury for post-mortem analysis. At 24 h post-injury, both TBI and MULTI mice had elevated edema, increased expression of GFAP (i.e., a marker for reactive astrocytes), and increased mRNA levels of inflammatory chemokines. There was also an effect of injury on cytokine levels at 35 days post-injury. However, the TBI and MULTI mice did not significantly differ on any of the measures assessed. These initial findings suggest that a concomitant muscle injury does not significantly affect preclinical TBI outcomes. Future studies should investigate the combination of different injury models, additional outcomes, and other post-injury time points

    The nuclear imperialism-necropolitics nexus: contextualizing Chinese-Uyghur oppression in our nuclear age

    Get PDF
    This paper provides a review of the People’s Republic of China’s (PRC) nuclear warfare and uranium mining programs in the Xinjiang Uyghur Autonomous Region. Its scope spans from the PRC’s first nuclear weapon test in Lop Nor, to contemporary issues surrounding in-situ leach uranium mining in the Yili basin, which now provides a third of PRC’s uranium. By exploring these scenarios, a lens can be placed on the parameters and limitations to Uyghur life within a nuclear state. This paper draws on the work of Achille Mbembe’s necropolitics, whereby power is persistently exercised as violence, to consider the entangled aftermath of nuclear imperialism and its effects to Uyghur bodies, environment and culture. While racialized nuclear imperialism presented Uyghur lives as inconsequential to progress in Xinjiang, post-Cold War necropolitics presents Uyghur culture as a direct threat to the progress and values of the PRC sovereign state. This paper proposes that the ongoing exploitation of nuclear Xinjiang provides an additional motivation for state-imposed necropolitical sanctions upon Uyghur people. This paper also presents anew theoretical contribution, the “nuclear imperialism-necropolitics nexus”, which offers away to consider the entangled legacies of spaces of nuclear activity, from nuclear imperialism to the post-Cold War world

    A Concomitant Muscle Injury Does Not Worsen Traumatic Brain Injury Outcomes in Mice

    Get PDF
    Traumatic brain injury (TBI) often involves multitrauma in which concurrent extracranial injury occurs. We previously demonstrated that a long bone fracture exacerbates neuroinflammation and functional outcomes in mice given a TBI. Whether other forms of concomitant peripheral trauma that are common in the TBI setting, such as skeletal muscle injury, have similar effects is unknown. As such, here we developed a novel mouse multitrauma model by combining a closed-skull TBI with a cardiotoxin (CTX)-induced muscle injury to investigate whether muscle injury affects TBI outcomes. Adult male mice were assigned to four groups: sham-TBI + sham-muscle injury (SHAM); sham-TBI + CTX-muscle injury (CTX); TBI + sham-muscle injury (TBI); TBI + CTX-muscle injury (MULTI). Some mice were euthanized at 24 h post-injury to assess neuroinflammation and cerebral edema. The remaining mice underwent behavioral testing after a 30-day recovery period, and were euthanized at 35 days post-injury for post-mortem analysis. At 24 h post-injury, both TBI and MULTI mice had elevated edema, increased expression of GFAP (i.e., a marker for reactive astrocytes), and increased mRNA levels of inflammatory chemokines. There was also an effect of injury on cytokine levels at 35 days post-injury. However, the TBI and MULTI mice did not significantly differ on any of the measures assessed. These initial findings suggest that a concomitant muscle injury does not significantly affect preclinical TBI outcomes. Future studies should investigate the combination of different injury models, additional outcomes, and other post-injury time points
    • …
    corecore