467 research outputs found

    A new indirect measurement method of the electron temperature for the Protosphera's pinch plasma

    Full text link
    This article presents a new method for estimating the electron temperature of the Protosphera's screw pinch. The temperature radial profile is obtained by a self-consistent modeling of a 1D MHD equilibrium along with a 0D power balance of the plasma column, given measurements and estimates of the axial pinch plasma current, of the plasma rotational frequency and, at the equatorial plane, of the electron density radial profile, of the edge poloidal magnetic field, of the edge electron temperature and of the neutrals pressure in the vacuum vessel. The plasma is considered in equilibrium with its neutral phase and in constant rotation. A MATLAB code has been developed with the aim of estimating the MHD radial equilibrium profiles, the thermodynamic plasma state and the neutrals profile. The numerical estimates are compared with available experimental data showing a good agreement.Comment: 4 pages, 6 figures, 1 table, research presented to the "6th ICFDT

    Notulae to the Italian alien vascular flora: 9

    Get PDF
    In this contribution, new data concerning the distribution of vascular flora alien to Italy are presented. It includes new records, confirmations, exclusions, and status changes for Italy or for Italian administrative regions. Furthermore, three new combinations are proposed. Nomenclatural and distribution updates published elsewhere are provided as Suppl. material 1

    Current drive at plasma densities required for thermonuclear reactors

    Get PDF
    Progress in thermonuclear fusion energy research based on deuterium plasmas magnetically confined in toroidal tokamak devices requires the development of efficient current drive methods. Previous experiments have shown that plasma current can be driven effectively by externally launched radio frequency power coupled to lower hybrid plasma waves. However, at the high plasma densities required for fusion power plants, the coupled radio frequency power does not penetrate into the plasma core, possibly because of strong wave interactions with the plasma edge. Here we show experiments performed on FTU (Frascati Tokamak Upgrade) based on theoretical predictions that nonlinear interactions diminish when the peripheral plasma electron temperature is high, allowing significant wave penetration at high density. The results show that the coupled radio frequency power can penetrate into high-density plasmas due to weaker plasma edge effects, thus extending the effective range of lower hybrid current drive towards the domain relevant for fusion reactors

    Overview of the FTU results

    Get PDF
    Since the 2016 IAEA Fusion Energy Conference, FTU operations have been mainly devoted to experiments on runaway electrons and investigations into a tin liquid limiter; other experiments have involved studies of elongated plasmas and dust. The tearing mode onset in the high density regime has been studied by means of the linear resistive code MARS, and the highly collisional regimes have been investigated. New diagnostics, such as a runaway electron imaging spectroscopy system for in-flight runaway studies and a triple Cherenkov probe for the measurement of escaping electrons, have been successfully installed and tested, and new capabilities of the collective Thomson scattering and the laser induced breakdown spectroscopy diagnostics have been explored

    Overview of the FTU results

    Get PDF
    Since the 2018 IAEA FEC Conference, FTU operations have been devoted to several experiments covering a large range of topics, from the investigation of the behaviour of a liquid tin limiter to the runaway electrons mitigation and control and to the stabilization of tearing modes by electron cyclotron heating and by pellet injection. Other experiments have involved the spectroscopy of heavy metal ions, the electron density peaking in helium doped plasmas, the electron cyclotron assisted start-up and the electron temperature measurements in high temperature plasmas. The effectiveness of the laser induced breakdown spectroscopy system has been demonstrated and the new capabilities of the runaway electron imaging spectrometry system for in-flight runaways studies have been explored. Finally, a high resolution saddle coil array for MHD analysis and UV and SXR diamond detectors have been successfully tested on different plasma scenarios

    DTT - Divertor Tokamak Test facility: A testbed for DEMO

    Get PDF
    The effective treatment of the heat and power exhaust is a critical issue in the road map to the realization of the fusion energy. In order to provide possible, reliable, well assessed and on-time answers to DEMO, the Divertor Tokamak Test facility (DTT) has been conceived and projected to be carried out and operated within the European strategy in fusion technology. This paper, based on the invited plenary talk at the 31st virtual SOFT Conference 2020, provides an overview of the DTT scientific proposal, which is deeply illustrated in the 2019 DTT Interim Design Report
    • …
    corecore