48 research outputs found

    Amino acids regulate the transcription, internal sorting, and intrinsic activity of the general amino acid permease (GAP1) in S. cerevisiae

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Biology, 2007.Includes bibliographical references.The high capacity general amino acid permease in Saccharomyces cerevisiae (GAP1) is regulated such that it actively imports amino acids into the cell from the extracellular medium only when internal amino acid levels are low. Regulation of activity allows the cell to rapidly and reversibly modulate amino acid import according to the nitrogen requirements of the cell. I have explored three distinct modes of action by which amino acids repress GAP1 activity: transcriptionally, by regulation of ubiquitin-mediated intracellular sorting, and by transport-dependent inactivation at the plasma membrane. Transcriptional regulation of GAP1 by two nutrient responsive GATA transcription factors, Nillp and Gln3p, allows the cell to modulate expression of the permease in response to both amino acid quantity and nitrogen source quality. Any Gaplp that is expressed in the presence of elevated internal amino acids is sorted to the vacuole and degraded or stored in internal compartments from which the permease can be rapidly mobilized to the plasma membrane when amino acid levels become limiting.(cont.) Redistribution of Gap Ilp from the plasma membrane to internal compartments upon an increase in internal amino acid levels involves three ubiquitin-mediated sorting steps that each require unique cis- and trans-acting factors. A constitutively expressed, non-ubiquitinateable form of Gap Ip can also be downregulated by the addition of amino acids through reversible, transport-dependent inactivation of the permease at the plasma membrane. Since amino acids are the primary source of nitrogen in the cell, upregulation of Gap Ip activity allows the cell to rapidly import nitrogen-containing compounds when internal amino acid pools are limiting. Conversely, downregulation of Gaplp activity when sufficient intracellular amino acids have accumulated allows the cell to avoid toxicity that results from unrestricted amino acid uptake. Therefore, amino acid regulated transcription, sorting, and activity of Gap 1 p are important to maintain the proper balance of intracellular amino acid levels in diverse and rapidly changing nutritional environments.by April L. Risinger.Ph.D

    In Vivo Evaluation of (-)-Zampanolide Demonstrates Potent and Persistent Antitumor Efficacy When Targeted to the Tumor Site.

    Get PDF
    Microtubule-stabilizing agents (MSAs) are a class of compounds used in the treatment of triple-negative breast cancer (TNBC), a subtype of breast cancer where chemotherapy remains the standard-of-care for patients. Taxanes like paclitaxel and docetaxel have demonstrated efficacy against TNBC in the clinic, however new classes of MSAs need to be identified due to the rise of taxane resistance in patients. (-)-Zampanolide is a covalent microtubule stabilizer that can circumvent taxane resistance in vitro but has not been evaluated for in vivo antitumor efficacy. Here, we determine that (-)-zampanolide has similar potency and efficacy to paclitaxel in TNBC cell lines, but is significantly more persistent due to its covalent binding. We also provide the first reported in vivo antitumor evaluation of (-)-zampanolide where we determine that it has potent and persistent antitumor efficacy when delivered intratumorally. Future work on zampanolide to further evaluate its pharmacophore and determine ways to improve its systemic therapeutic window would make this compound a potential candidate for clinical development through its ability to circumvent taxane-resistance mechanisms

    Drosophila Ringmaker regulates microtubule stabilization and axonal extension during embryonic development

    Get PDF
    Axonal growth and targeting are fundamental to the organization of the nervous system, and require active engagement of the cytoskeleton. Polymerization and stabilization of axonal microtubules is central to axonal growth and maturation of neuronal connectivity. Studies have suggested that members of the tubulin polymerization promoting protein (TPPP, also known as P25α) family are involved in cellular process extension. However, no in vivo knockout data exists regarding its role in axonal growth during development. Here, we report the characterization of Ringmaker (Ringer; CG45057), the only Drosophila homolog of long p25α proteins. Immunohistochemical analyses indicate that Ringer expression is dynamically regulated in the embryonic central nervous system (CNS). ringer-null mutants show cell misplacement, and errors in axonal extension and targeting. Ultrastructural examination of ringer mutants revealed defective microtubule morphology and organization. Primary neuronal cultures of ringer mutants exhibit defective axonal extension, and Ringer expression in cells induced microtubule stabilization and bundling into rings. In vitro assays showed that Ringer directly affects tubulin, and promotes microtubule bundling and polymerization. Together, our studies uncover an essential function of Ringer in axonal extension and targeting through proper microtubule organization

    Biological Characterization of an Improved Pyrrole-Based Colchicine Site Agent Identified through Structure-Based Design s

    Get PDF
    ABSTRACT A refined model of the colchicine site on tubulin was used to design an improved analog of the pyrrole parent compound, JG-03-14. The optimized compound, NT-7-16, was evaluated in biological assays that confirm that it has potent activities as a new colchicine site microtubule depolymerizer. NT-7-16 exhibits antiproliferative and cytotoxic activities against multiple cancer cell lines, with IC 50 values of 10-16 nM, and it is able to overcome drug resistance mediated by the expression of P-glycoprotein and the bIII isotype of tubulin. NT-7-16 initiated the concentration-dependent loss of cellular microtubules and caused the formation of abnormal mitotic spindles, leading to mitotic accumulation. The direct interaction of NT-7-16 with purified tubulin was confirmed, and it was more potent than combretastatin A-4 in these assays. Binding studies verified that NT-7-16 binds to tubulin within the colchicine site. The antitumor effects of NT-7-16 were evaluated in an MDA-MB-435 xenograft model and it had excellent activity at concentrations that were not toxic. A second compound, NT-9-21, which contains dichloro moieties in place of the 3,5-dibromo substituents of NT-7-16, had a poorer fit within the colchicine site as predicted by modeling and the Hydropathic INTeractions score. Biological evaluations showed that NT-9-21 has 10-fold lower potency than NT-7-16, confirming the modeling predictions. These studies highlight the value of the refined colchicine-site model and identify a new pyrrole-based colchicine-site agent with potent in vitro activities and promising in vivo antitumor actions

    Re-evaluation of the Fijianolide/Laulimalide Chemotype Suggests an Alternate Mechanism of Action for C-15/C-20 Analogs.

    Get PDF
    Herein, we report on naturally derived microtubule stabilizers with activity against triple negative breast cancer (TNBC) cell lines, including paclitaxel, fijianolide B/laulimalide (3), fijianolide B di-acetate (4), and two new semisynthetic analogs of 3, which include fijianolide J (5) and fijianolide L (6). Similar to paclitaxel, compound 3 demonstrated classic microtubule stabilizing activity with potent (GI50 = 0.7–17 nM) antiproliferative efficacy among the five molecularly distinct TNBC cell lines. Alternatively, compounds 5 or 6, generated from oxidation of C-20 or C-15 and C-20 respectively, resulted in a unique profile with reduced potency (GI50 = 4–9 μM), but improved efficacy in some lines, suggesting a distinct mechanism of action. The C-15, C-20 di-acetate, and dioxo modifications on 4 and 6 resulted in compounds devoid of classic microtubule stabilizing activity in biochemical assays. While 4 also had no detectable effect on cellular microtubules, 6 promoted a reorganization of the cytoskeleton resulting in an accumulation of microtubules at the cell periphery. Compound 5, with a single C-20 oxo substitution, displayed a mixed phenotype, sharing properties of 3 and 6. These results demonstrate the importance of the C-15/C-20 chiral centers, which appear to be required for the potent microtubule stabilizing activity of this chemotype and that oxidation of these sites promotes unanticipated cytoskeletal alterations that are distinct from classic microtubule stabilization, likely through a distinct mechanism of action

    Targeting the tubulin C-terminal tail by charged small molecules

    Get PDF
    10 p.-6 fig.The disordered tubulin C-terminal tail (CTT), which possesses a higher degree of heterogeneity, is the target for the interaction of many proteins and cellular components. Compared to the seven well-described binding sites of microtubule-targeting agents (MTAs) that localize on the globular tubulin core, tubulin CTT is far less explored. Therefore, tubulin CTT can be regarded as a novel site for the development of MTAs with distinct biochemical and cell biological properties. Here, we designed and synthesized linear and cyclic peptides containing multiple arginines (RRR), which are complementary to multiple acidic residues in tubulin CTT. Some of them showed moderate induction and promotion of tubulin polymerization. The most potent macrocyclic compound 1f was found to bind to tubulin CTT and thus exert its bioactivity. Such RRR containing compounds represent a starting point for the discovery of tubulin CTT-targeting agents with therapeutic potential.This research was funded by the CAMS Innovation Fund for Medical Sciences (Grant No. 2016-I2M-1-010), State Key Lab Grant type C (Grant No. GTZC201709) (W.-S. F.), Ministerio de Ciencia e Innovación (Grant No. PID2021-123399OB-I00 /AEI/10.13039/501100011033) (M. Á. O.), Ministerio de Ciencia e Innovacion (Grant No. PID2019-104545RB-I00 /AEI/10.13039/501100011033), European Commission-NextGenerationsEU (Regulation EU 2020/2094, through CSIC's Global Health Platform (PTI Salud Global)), Proyecto de Investigación en Neurociencia Fundacion Tatiana Pérez de Guzmán el Bueno 2020 (J. F. D.), the Voelcker Fund (A. R.), the Natural Science Foundation of Guangdong Province of China (Grant No. 2022A1515011419), and the Key Project in Higher Education of Guangdong, China (Grant No. 2022ZDZX2029) (Z. Y.).Peer reviewe

    Gatorbulin-1, a distinct cyclodepsipeptide chemotype, targets a seventh tubulin pharmacological site

    Get PDF
    35 p.-5 fig.-1 tab.Tubulin-targeted chemotherapy has proven to be a successful and wide spectrum strategy against solid and liquid malignancies. Therefore, new ways to modulate this essential protein could lead to new antitumoral pharmacological approaches. Currently known tubulin agents bind to six distinct sites at α/β-tubulin either promoting microtubule stabilization or depolymerization. We have discovered a seventh binding site at the tubulin intradimer interface where a novel microtubule-destabilizing cyclodepsipeptide, termed gatorbulin-1 (GB1), binds. GB1 has a unique chemotype produced by a marine cyanobacterium. We have elucidated this dual, chemical and mechanistic, novelty through multidimensional characterization, starting with bioactivity-guided natural product isolation and multinuclei NMR-based structure determination, revealing the modified pentapeptide with a functionally critical hydroxamate group; and validation by total synthesis. We have investigated the pharmacology using isogenic cancer cell screening, cellular profiling, and complementary phenotypic assays, and unveiled the underlying molecular mechanism by in vitro biochemical studies and high-resolution structural determination of the α/β-tubulin−GB1 complex.This research was supported by the NIH, National Cancer Institute Grants R01CA172310 (to H.L.) and R50CA211487 (to R.R.) and National Institute of General Medical Sciences Grant P41GM086210 (to H.L. and V.J.P.), Commercialization Fund Award from University of Florida (UF) Innovate (UF Office of Technology Licensing), and Debbie and Sylvia DeSantis Chair professorship (H.L.). The biochemical and the crystal structure work was supported by grants Ministerio de Ciencia e Innovación PID2019-10454RB-I00/AEI/10.13039/501100011033, Fondo de Investigaciones Sanitarias and COV20/01007E Proyecto Intramural Especial 201920E111 from Consejo Superior de Investigaciones Científicas (to J.F.D.) and European Union H2020-MSCA-ITN-2019 860070 TUBINTRAIN grant (to J.F.D. and A.E.P.).Peer reviewe

    In Vivo Evaluation of (−)-Zampanolide Demonstrates Potent and Persistent Antitumor Efficacy When Targeted to the Tumor Site

    No full text
    Microtubule-stabilizing agents (MSAs) are a class of compounds used in the treatment of triple-negative breast cancer (TNBC), a subtype of breast cancer where chemotherapy remains the standard-of-care for patients. Taxanes like paclitaxel and docetaxel have demonstrated efficacy against TNBC in the clinic, however new classes of MSAs need to be identified due to the rise of taxane resistance in patients. (−)-Zampanolide is a covalent microtubule stabilizer that can circumvent taxane resistance in vitro but has not been evaluated for in vivo antitumor efficacy. Here, we determine that (−)-zampanolide has similar potency and efficacy to paclitaxel in TNBC cell lines, but is significantly more persistent due to its covalent binding. We also provide the first reported in vivo antitumor evaluation of (−)-zampanolide where we determine that it has potent and persistent antitumor efficacy when delivered intratumorally. Future work on zampanolide to further evaluate its pharmacophore and determine ways to improve its systemic therapeutic window would make this compound a potential candidate for clinical development through its ability to circumvent taxane-resistance mechanisms
    corecore