16 research outputs found

    PABPN1 gene therapy for oculopharyngeal muscular dystrophy

    Get PDF
    International audienceOculopharyngeal muscular dystrophy (OPMD) is an autosomal dominant, late-onset muscle disorder characterized by ptosis, swallowing difficulties, proximal limb weakness and nuclear aggregates in skeletal muscles. OPMD is caused by a trinucleotide repeat expansion in the PABPN1 gene that results in an N-terminal expanded polyalanine tract in polyA-binding protein nuclear 1 (PABPN1). Here we show that the treatment of a mouse model of OPMD with an adeno-associated virus-based gene therapy combining complete knockdown of endogenous PABPN1 and its replacement by a wild-type PABPN1 substantially reduces the amount of insoluble aggregates, decreases muscle fibrosis, reverts muscle strength to the level of healthy muscles and normalizes the muscle transcriptome. The efficacy of the combined treatment is further confirmed in cells derived from OPMD patients. These results pave the way towards a gene replacement approach for OPMD treatment

    Accumulation of poly(A) RNA in nuclear granules enriched in Sam68 in motor neurons from the SMNA7 mouse model of SMA

    Get PDF
    Spinal muscular atrophy (SMA) is a severe motor neuron (MN) disease caused by the deletion or mutation of the survival motor neuron 1 (SMN1) gene, which results in reduced levels of the SMN protein and the selective degeneration of lower MNs. The best-known function of SMN is the biogenesis of spliceosomal snRNPs, the major components of the pre-mRNA splicing machinery. Therefore, SMN deficiency in SMA leads to widespread splicing abnormalities. We used the SMN?7 mouse model of SMA to investigate the cellular reorganization of polyadenylated mRNAs associated with the splicing dysfunction in MNs. We demonstrate that SMN deficiency induced the abnormal nuclear accumulation in euchromatin domains of poly(A) RNA granules (PARGs) enriched in the splicing regulator Sam68. However, these granules lacked other RNA-binding proteins, such as TDP43, PABPN1, hnRNPA12B, REF and Y14, which are essential for mRNA processing and nuclear export. These effects were accompanied by changes in the alternative splicing of the Sam68-dependent Bcl-x and Nrnx1 genes, as well as changes in the relative accumulation of the intron-containing Chat, Chodl, Myh9 and Myh14 mRNAs, which are all important for MN functions. PARG-containing MNs were observed at presymptomatic SMA stage, increasing their number during the symptomatic stage. Moreover, the massive accumulations of poly(A) RNA granules in MNs was accompanied by the cytoplasmic depletion of polyadenylated mRNAs for their translation. We suggest that the SMN-dependent abnormal accumulation of polyadenylated mRNAs and Sam68 in PARGs reflects a severe dysfunction of both mRNA processing and translation, which could contribute to SMA pathogenesis.This work was supported by grants from: “Dirección General de Investigación” of Spain (BFU2014-54754-P and SAF2015-70801-R, cofinanced by FEDER) and “Instituto de Investigación Marqués de Valdecilla-IDIVAL (NVAL17/22). Dr. Tapia is the recipient of a grant from SMA Europe and FundAME (Spain)

    Nuclear transport factor directs localization of protein synthesis during mitosis

    No full text
    Export of messenger RNA from the transcription site in the nucleus and mRNA targeting to the translation site in the cytoplasm are key regulatory processes in protein synthesis. In yeast, the mRNA-binding proteins Nab2p and Nab4p/Hrp1p accompany transcripts to their translation site, where the karyopherin Kap104p mediates both their dissociation from the mRNA and their transport back into the nucleus. We found that Kap104p localized to the distal bud tip and the bud neck during cell division, resulting in a localized release of translation-competent mRNA and increased protein synthesis in the emerging daughter cell. Temporally and spatially coordinated localization of Kap104p is a new mechanism for the asymmetric distribution of protein synthesis in dividing cells.
    corecore