2,820 research outputs found
Google Maps to collect spatial responses in a survey environment
This paper examines the use of Google Maps-based tools to collect spatial responses from participants during academic research surveys conducted via the Internet. Using two recent examples from the University of East Anglia it discusses the online survey context and how Google Maps was used, issues surrounding the technical implementation of these tools, processing and use of the collected data, and concludes with considerations for future research that might employ similar methods
Multi-waveband observations of colliding galaxies
Colliding galaxies represent a major challenge to both theorists and observers because of the large variety of phenomena which are expected to come into play during the interaction. Strong gravitational fluctuations may drive non-linear waves and instabilities throughout the stars and gas leading to enhanced star formation, nuclear activity and ultimately a mixing of the morphological components of the original galaxies. One relatively uncomplicated class of colliding galaxy where stellar waves play an important role in star formation are ring galaxies. Ring galaxies are probably formed when a companion galaxy passes through the center of a disk system driving circular waves through the disk (Lynds and Toomre 1976, Toomre 1978, Struck-Marcell 1990). Off-center collisions can generate non-circular waves and can be loosely described as banana-shaped although they may exhibit more complex forms as the waves expand into the disk. The propagation of such stellar and gaseous waves through the disk leads to enhanced star formation (e.g., Appleton and Struck-Marcell 1987a; Jeske 1986) and provides a unique probe of the response of the interstellar medium (ISM) to a propagating wave (see Appleton and Struck-Marcell 1987b). Here, the authors report results for 3 systems; the irregular ring Arp 143 (=VV 117); Wakamatsu's Seyfert ring (A0959-755; see Wakamatsu and Nishida 1987) and the brighter member of the pair of ring galaxies comprising of AM 1358-221. The most complete multi-wavelength data is for Arp 143. Optical charge coupled device (CCD) observations made with the 60 inch Palomar telescope at BV and r band, near-IR images at J (1.25 microns), H (1.65 microns) and k (2.2 microns) bands from the infrared camera (IRCAM) InSb array camera on the 3.8m United Kingdon Infrared Telescope (UKIRT) telescope and very large array (VLA) observations at 20cm in both the neutral hydrogen line and radio continuum are described. The observations of Wakamatsu's ring and AM 1358 were made only in the near-IR, and a comparison is made with available optical plate material
H2 formation and excitation in the Stephan's Quintet galaxy-wide collision
Context. The Spitzer Space Telescope has detected a powerful (L(H2)~10^41 erg
s-1) mid-infrared H2 emission towards the galaxy-wide collision in the
Stephan's Quintet (SQ) galaxy group. This discovery was followed by the
detection of more distant H2-luminous extragalactic sources, with almost no
spectroscopic signatures of star formation. These observations set molecular
gas in a new context where one has to describe its role as a cooling agent of
energetic phases of galaxy evolution. Aims. The SQ postshock medium is observed
to be multiphase, with H2 gas coexisting with a hot (~ 5 10^6 K), X-ray
emitting plasma. The surface brightness of H2 lines exceeds that of the X-rays
and the 0-0 S(1) H2 linewidth is ~ 900 km s-1, of the same order of the
collision velocity. These observations raise three questions we propose to
answer: (i) Why H2 is present in the postshock gas ? (ii) How can we account
for the H2 excitation ? (iii) Why H2 is a dominant coolant ? Methods. We
consider the collision of two flows of multiphase dusty gas. Our model
quantifies the gas cooling, dust destruction, H2 formation and excitation in
the postshock medium. Results. (i) The shock velocity, the post-shock
temperature and the gas cooling timescale depend on the preshock gas density.
The collision velocity is the shock velocity in the low density volume filling
intercloud gas. This produces a ~ 5 10^6 K, dust-free, X-ray emitting plasma.
The shock velocity is smaller in clouds. We show that gas heated to
temperatures less than 10^6 K cools, keeps its dust content and becomes H2
within the SQ collision age (~ 5 10^6 years). (ii) Since the bulk kinetic
energy of the H2 gas is the dominant energy reservoir, we consider that the H2
emission is powered by the dissipation of kinetic turbulent energy. (Abridged)Comment: 19 pages, 12 figures. Accepted for publication in Astronomy &
Astrophysics Minor editing and typo
A Herschel and CARMA view of CO and [C II] in Hickson Compact groups
Understanding the evolution of galaxies from the starforming blue cloud to
the quiescent red sequence has been revolutionized by observations taken with
Herschel Space Observatory, and the onset of the era of sensitive millimeter
interferometers, allowing astronomers to probe both cold dust as well as the
cool interstellar medium in a large set of galaxies with unprecedented
sensitivity. Recent Herschel observations of of H2-bright Hickson Compact
Groups of galaxies (HCGs) has shown that [CII] may be boosted in diffuse
shocked gas. CARMA CO(1-0) observations of these [CII]-bright HCGs has shown
that these turbulent systems also can show suppression of SF. Here we present
preliminary results from observations of HCGs with Herschel and CARMA, and
their [CII] and CO(1-0) properties to discuss how shocks influence galaxy
transitions and star formation.Comment: 4 pages, 3 figures, Proceedings for IAU Symposium 309, Galaxies in 3D
across the Univers
A Study of Heating and Cooling of the ISM in NGC 1097 with Herschel-PACS and Spitzer-IRS
NGC 1097 is a nearby Seyfert 1 galaxy with a bright circumnuclear starburst ring, a strong large-scale bar, and an active nucleus. We present a detailed study of the spatial variation of the far-infrared (FIR) [C II]158 μm and [O I]63 μm lines and mid-infrared H_2 emission lines as tracers of gas cooling, and of the polycyclic aromatic hydrocarbon (PAH) bands as tracers of the photoelectric heating, using Herschel-PACS and Spitzer-IRS infrared spectral maps. We focus on the nucleus and the ring, and two star-forming regions (Enuc N and Enuc S). We estimated a photoelectric gas heating efficiency ([C II]158 μm+[O I]63 μm)/PAH in the ring about 50% lower than in Enuc N and S. The average 11.3/7.7 μm PAH ratio is also lower in the ring, which may suggest a larger fraction of ionized PAHs, but no clear correlation with [C II]158 μm/PAH(5.5-14 μm) is found. PAHs in the ring are responsible for a factor of two more [C II]158 μm and [O I]63 μm emission per unit mass than PAHs in the Enuc S. spectral energy distribution (SED) modeling indicates that at most 25% of the FIR power in the ring and Enuc S can come from high-intensity photodissociation regions (PDRs), in which case G_0 ~ 10^(2.3) and n_H ~ 10^(3.5) cm^(–3) in the ring. For these values of G_0 and n_H, PDR models cannot reproduce the observed H2 emission. Much of the H2 emission in the starburst ring could come from warm regions in the diffuse interstellar medium that are heated by turbulent dissipation or shocks
Enhanced dust heating in the bulges of early-type spiral galaxies
Stellar density and bar strength should affect the temperatures of the cool (T ~ 20–30 K) dust component in the inner regions of galaxies, which implies that the ratio of temperatures in the circumnuclear regions to the disk should depend on Hubble type. We investigate the differences between cool dust temperatures in the central 3 kpc and disk of 13 nearby galaxies by fitting models to measurements between 70 and 500 μm. We attempt to quantify temperature trends in nearby disk galaxies, with archival data from Spitzer/MIPS and new observations with Herschel/SPIRE, which were acquired during the first phases of the Herschel observations for the KINGFISH (Key Insights on Nearby Galaxies: a Far-Infrared Survey with Herschel) sample. We fit single-temperature modified blackbodies to far-infrared and submillimeter measurements of the central and disk regions of galaxies to determine the temperature of the component(s) emitting at those wavelengths. We present the ratio of central-region-to-disk-temperatures of the cool dust component of 13 nearby galaxies as a function of morphological type. We find a significant temperature gradient in the cool dust component in all galaxies, with a mean center-to-disk temperature ratio of 1.15 ± 0.03. The cool dust temperatures in the central ~3 kpc of nearby galaxies are 23 (±3)% hotter for morphological types earlier than Sc, and only 9 (±3)% hotter for later types. The temperature ratio is also correlated with bar strength, with only strongly barred galaxies having a ratio over 1.2. The strong radiation field in the high stellar density of a galactic bulge tends to heat the cool dust component to higher temperatures, at least in early-type spirals with relatively large bulges, especially when paired with a strong bar
Cloud fluid models of gas dynamics and star formation in galaxies
The large dynamic range of star formation in galaxies, and the apparently complex environmental influences involved in triggering or suppressing star formation, challenges the understanding. The key to this understanding may be the detailed study of simple physical models for the dominant nonlinear interactions in interstellar cloud systems. One such model is described, a generalized Oort model cloud fluid, and two simple applications of it are explored. The first of these is the relaxation of an isolated volume of cloud fluid following a disturbance. Though very idealized, this closed box study suggests a physical mechanism for starbursts, which is based on the approximate commensurability of massive cloud lifetimes and cloud collisional growth times. The second application is to the modeling of colliding ring galaxies. In this case, the driving processes operating on a dynamical timescale interact with the local cloud processes operating on the above timescale. The results is a variety of interesting nonequilibrium behaviors, including spatial variations of star formation that do not depend monotonically on gas density
- …
