1,664 research outputs found

    Spin-waves in the J1aJ1bJ2J_{1a}-J_{1b}-J_{2} orthorombic square-lattice Heisenberg models: Application to the iron pnictide materials

    Full text link
    Motivated by the observation of spatially anisotropic exchange constants in the iron pnictide materials, we study the spin-wave spectra of the J1aJ1bJ2J_{1a}-J_{1b}-J_{2} Heisenberg models on a square-lattice with nearest neighbor exchange J1aJ_{1a} along x and J1bJ_{1b} along y axis and a second neighbor exchange J2J_2. We focus on the regime, where the spins order at (π,0\pi,0), and compute the spectra by systematic expansions around the Ising limit. We study both spin-half and spin-one Heisenberg models as well as a range of parameters to cover various cases proposed for the iron pnictide materials. The low-energy spectra have anisotropic spin-wave velocities and are renormalized with respect to linear spin-wave theory by up to 20 percent, depending on parameters. Extreme anisotropy, consisting of a ferromagnetic J1b=JFJ_{1b}=- |J_F|, is best distinguished from a weak anisotropy (J1aJ1b=J1J_{1a}\approx J_{1b}=J_1, J2>J1/2J_2>J_1/2) by the nature of the spin-waves near the wavevectors (0,π0,\pi) or (π,π\pi,\pi). The reported spectra for the pnictide material CaFe2_2As2_2 clearly imply such an extreme anisotropy.Comment: 6 pages, 10 figure

    An assessment of key model parametric uncertainties in projections of Greenland Ice Sheet behavior

    Get PDF
    Lack of knowledge about the values of ice sheet model input parameters introduces substantial uncertainty into projections of Greenland Ice Sheet contributions to future sea level rise. Computer models of ice sheet behavior provide one of several means of estimating future sea level rise due to mass loss from ice sheets. Such models have many input parameters whose values are not well known. Recent studies have investigated the effects of these parameters on model output, but the range of potential future sea level increases due to model parametric uncertainty has not been characterized. Here, we demonstrate that this range is large, using a 100-member perturbed-physics ensemble with the SICOPOLIS ice sheet model. Each model run is spun up over 125 000 yr using geological forcings and subsequently driven into the future using an asymptotically increasing air temperature anomaly curve. All modeled ice sheets lose mass after 2005 AD. Parameters controlling surface melt dominate the model response to temperature change. After culling the ensemble to include only members that give reasonable ice volumes in 2005 AD, the range of projected sea level rise values in 2100 AD is ~40 % or more of the median. Data on past ice sheet behavior can help reduce this uncertainty, but none of our ensemble members produces a reasonable ice volume change during the mid-Holocene, relative to the present. This problem suggests that the model's exponential relation between temperature and precipitation does not hold during the Holocene, or that the central-Greenland temperature forcing curve used to drive the model is not representative of conditions around the ice margin at this time (among other possibilities). Our simulations also lack certain observed physical processes that may tend to enhance the real ice sheet's response. Regardless, this work has implications for other studies that use ice sheet models to project or hindcast the behavior of the Greenland Ice Sheet

    Digital collections usage at the University of Illinois at Urbana-Champaign Library: 2015 report

    Get PDF
    This report analyzes administrative data (number of collections, total items) and web analytics usage data (sessions, users, page views) of the University of Illinois at Urbana-Champaign Library’s locally managed digital collections from July 30, 2014 to July 30, 2015.Ope

    Mechanical Translation

    Get PDF
    Contains reports on two research projects.National Science Foundatio

    A New Sub-Period-Minimum Cataclysmic Variable With Partial Hydrogen Depletion And Evidence Of Spiral Disk Structure

    Get PDF
    We present time-resolved spectroscopy and photometry of CSS 120422:111127+571239 (=SBS 1108+574), a recently discovered SU UMa-type dwarf nova whose 55 minute orbital period is well below the cataclysmic variable (CV) period minimum of similar to 78 minutes. In contrast with most other known CVs, its spectrum features He I emission of comparable strength to the Balmer lines, implying a hydrogen abundance less than 0.1 of long-period CVs-but still at least 10 times higher than that in AM CVn stars. Together, the short orbital period and remarkable helium-to-hydrogen ratio suggest that mass transfer in CSS 120422 began near the end of the donor star's main-sequence lifetime, meaning that this CV is a strong candidate progenitor of an AM CVn system as described by Podsiadlowski et al. Moreover, a Doppler tomogram of the Ha line reveals two distinct regions of enhanced emission. While one is the result of the stream-disk impact, the other is probably attributable to spiral disk structure generated when material in the outer disk achieves a 2:1 orbital resonance with respect to the donor.NSF AST-1211196, AST-9987045Department of Physics at the University of Notre DameNSF Telescope System Instrumentation Program (TSIP)Ohio Board of RegentsOhio State University Office of ResearchAstronom

    Is the Yb2Ti2O7 pyrochlore a quantum spin ice?

    Full text link
    We use numerical linked cluster (NLC) expansions to compute the specific heat, C(T), and entropy, S(T), of a quantum spin ice model of Yb2Ti2O7 using anisotropic exchange interactions recently determined from inelastic neutron scattering measurements and find good agreement with experimental calorimetric data. In the perturbative weak quantum regime, this model has a ferrimagnetic ordered ground state, with two peaks in C(T): a Schottky anomaly signalling the paramagnetic to spin ice crossover followed at lower temperature by a sharp peak accompanying a first order phase transition to the ferrimagnetic state. We suggest that the two C(T) features observed in Yb2Ti2O7 are associated with the same physics. Spin excitations in this regime consist of weakly confined spinon-antispinon pairs. We suggest that conventional ground state with exotic quantum dynamics will prove a prevalent characteristic of many real quantum spin ice materials.Comment: 8 pages (two-column), 9 figure

    Thermal origin of neutron star magnetic fields

    Get PDF
    It is proposed that magnetic field arises naturally in neutron stars as a consequence of thermal effects occurring in their outer crusts. The heat flux through the crust, which is carried mainly by degenerate electrons, can give rise to a possible thermoelectric instability in the solid crust which causes horizontal magnetic field components to grow exponentially with time. However, in order for the thermally driven growth to exceed ohmic decay, either the electron collision time must exceed existing estimates by a factor ∼ 3 or the surface layers comprise helium. A second instability is possible if the liquid phase that lies above the solid crust also contains a horizontal magnetic field. The heat flux will drive circulation which should amplify the field strength provided that there is a seed field in excess of ∼ 10^8 G. If either of these two instabilities develops the field will quickly grow to a strength of ∼ 10^(12) G, where the instabilities become non-linear. Further growth will saturate when either the magnetic stress exceeds the lattice yield stress or the temperature perturbations become non-linear, both of which occur at a subsurface field strength of ∼ 10^(14) G; the corresponding surface field strength is ∼ 10^(12) G. Further evolution of the magnetic field should lead to long-range order and yield neutron star magnetic dipole moments ∼ 10^(30) G cm^3, comparable with those observed. Newly-formed neutron stars should be able to develop their dipole moments in a hundred thousand years and maintain them for as long as heat flows through the crust. Thereafter, the dipole moment should decay in several million years, as observed in the case of most radio pulsars. Neutron stars that are formed spinning rapidly, like that in the Crab Nebula, should be able to grow magnetic fields far more rapidly since their rotational energy can also be tapped to drive thermoelectric currents. The interiors of neutron stars in binary systems may be heated by the energy released by accreting matter. The resulting heat flux may cause the production of magnetic fields in these objects. Binary pulsars, with their unusually low and persistent fields, have probably passed through this phase
    corecore