163 research outputs found

    Dynamics and Structure of Three-Dimensional Trans-Alfvenic Jets. II. The Effect of Density and Winds

    Full text link
    Two three-dimensional magnetohydrodynamical simulations of strongly magnetized conical jets, one with a poloidal and one with a helical magnetic field, have been performed. In the poloidal simulation a significant sheath (wind) of magnetized moving material developed and partially stabilized the jet to helical twisting. The fundamental pinch mode was not similarly affected and emission knots developed in the poloidal simulation. Thus, astrophysical jets surrounded by outflowing winds could develop knotty structures along a straight jet triggered by pinching. Where helical twisting dominated the dynamics, magnetic field orientation along the line-of-sight could be organized by the toroidal flow field accompanying helical twisting. On astrophysical jets such structure could lead to a reversal of the direction of Faraday rotation in adjacent zones along a jet. Theoretical analysis showed that the different dynamical behavior of the two simulations could be entirely understood as a result of dependence on the velocity shear between jet and wind which must exceed a surface Alfven speed before the jet becomes unstable to helical and higher order modes of jet distortion.Comment: 25 pages, 15 figures, in press Astrophysical Journal (September

    Plasma physics in clusters of galaxies

    Get PDF
    Clusters of galaxies are the largest self-gravitating structures in the universe. Each cluster is filled with a large-scale plasma atmosphere, in which primordial matter is mixed with matter that has been processed inside stars. This is a wonderful plasma physics laboratory. Our diagnostics are the data we obtain from X-ray and radio telescopes. The thermal plasma is a strong X-ray source; from this we determine its density and temperature. Radio data reveal a relativistic component in the plasma, and first measurements of the intracluster magnetic field have now been made. Energization of the particles and the field must be related to the cosmological evolution of the cluster. The situation is made even richer by the few galaxies in each cluster which host radio jets. In these galaxies, electrodynamics near a massive black hole in the core of the galaxy lead to a collimated plasma beam which propagates from the nucleus out to supergalactic scales. These jets interact with the cluster plasma to form the structures known as radio galaxies. The interaction disturbs and energizes the cluster plasma. This complicates the story but also helps us understand both the radio jets and the cluster plasma.Comment: 12 pages, 6 figures, 3 in color. Invited review, to appear in Physics of Plasmas, May 2003. After publication it can be found at http://ojps.aip.org/po

    On the Dynamics and Structure of Three-Dimensional Trans-Alfvenic Jets

    Full text link
    Three-dimensional magnetohydrodynamical simulations of strongly magnetized ``light'' conical jets have been performed. An investigation of the transition from sub-Alfv\'enic to super-Alfv\'enic flow has been made for nearly poloidal and for helical magnetic fields. The jets are stable to asymmetric modes of jet distortion provided they are sub-Alfv\'enic over most of their interior but destabilize rapidly when they become on average super-Alfv\'enic. The jets are precessed at the origin and the resulting small amplitude azimuthal motion is communicated down the jet to the Alfv\'en point where it couples to a slowly moving and rapidly growing helical twist. Significant jet rotation can contribute to destabilization via increase in the velocity shear between the jet and the external medium. Destabilization is accompanied by significant mass entrainment and the jets slow down significantly as denser external material is entrained. Synchrotron intensity images satisfactorily reveal large scale helical structures but have trouble distinguishing a large amplitude elliptical jet distortion that appears as an apparent pinching in an intensity image. Smaller scale jet distortions are not clearly revealed in intensity images, largely as a result of the relatively small total pressure variations that accompany destabilization and growing distortions. Fractional polarization is high as a result of the strong ordered magnetic fields except where the intensity image suggests cancellation of polarization vectors by integration through twisted structures.Comment: 27 pages, 11 figures, AASTeX, to appear in Oct 20 issue of ApJ, postscript versions of Figures 5 and 6 are available at this URL http://crux.astr.ua.edu/~rosen/tralf/hr.htm

    Structure and Stability of Keplerian MHD Jets

    Get PDF
    MHD jet equilibria that depend on source properties are obtained using a simplified model for stationary, axisymmetric and rotating magnetized outflows. The present rotation laws are more complex than previously considered and include a Keplerian disc. The ensuing jets have a dense, current-carrying central core surrounded by an outer collar with a return current. The intermediate part of the jet is almost current-free and is magnetically dominated. Most of the momentum is located around the axis in the dense core and this region is likely to dominate the dynamics of the jet. We address the linear stability and the non-linear development of instabilities for our models using both analytical and 2.5-D numerical simulation's. The instabilities seen in the simulations develop with a wavelength and growth time that are well matched by the stability analysis. The modes explored in this work may provide a natural explanation for knots observed in astrophysical jets.Comment: 35 pages, accepted by the Ap

    Imaging nonequilibrium atomic vibrations with x-ray diffuse scattering

    Full text link
    For over a century, x-ray scattering has been the most powerful tool for determining the equilibrium structure of crystalline materials. Deviations from perfect periodicity, for example due to thermal motion of the atoms, reduces the intensity of the Bragg peaks as well as produces structure in the diffuse scattering background. Analysis of the thermal diffuse scattering (TDS) had been used to determine interatomic force constants and phonon dispersion in relatively simple cases before inelastic neutron scattering became the preferred technique to study lattice dynamics. With the advent of intense synchrotron x-ray sources, there was a renewed interest in TDS for measuring phonon dispersion. The relatively short x-ray pulses emanating from these sources also enables the measurement of phonon dynamics in the time domain. Prior experiments on nonequilibrium phonons were either limited by time-resolution and/or to relatively long wavelength excitations. Here we present the first images of nonequilibrium phonons throughout the Brillouin zone in photoexcited III-V semiconductors, indium-phosphide and indium-antimonide, using picosecond time-resolved diffuse scattering. In each case, we find that the lattice remain out of equilibrium for several hundred picoseconds up to nanoseconds after laser excitation. The non-equilibrium population is dominated by transverse acoustic phonons which in InP are directed along high-symmetry directions. The results have wide implications for the detailed study of electron-phonon and phonon-phonon coupling in solids.Comment: 10 pages, 3 figure

    The Propagation of Magneto-Centrifugally Launched Jets: I

    Get PDF
    We present simulations of the propagation of magnetized jets. This work differs from previous studies in that the cross-sectional distributions of the jets's state variables are derived from analytical models for magneto-centrifugal launching. The source is a magnetized rotator whose properties are specfied as boundary conditions. The jets in these simulations are considerably more complex than the ``top-hat''constant density etc. profiles used in previous work. We find that density and magnetic field stratification (with radius) in the jet leads to new behavior including the separation of an inner jet core from a low density collar. We find this {\it jet within a jet} structure, along with the magnetic stresses, leads to propagation behaviors not observed in previous simulation studies. Our methodology allows us to compare MHD jets from different types of sources whose properties could ultimately be derived from the behavior of the propagating jets.Comment: 42 pages, accepted by the Ap

    Magnetocentrifugal Winds in 3D: Nonaxisymmetric Steady State

    Full text link
    Outflows can be loaded and accelerated to high speeds along rapidly rotating, open magnetic field lines by centrifugal forces. Whether such magnetocentrifugally driven winds are stable is a longstanding theoretical problem. As a step towards addressing this problem, we perform the first large-scale 3D MHD simulations that extend to a distance ∌102\sim 10^2 times beyond the launching region, starting from steady 2D (axisymmetric) solutions. In an attempt to drive the wind unstable, we increase the mass loading on one half of the launching surface by a factor of 10\sqrt{10}, and reduce it by the same factor on the other half. The evolution of the perturbed wind is followed numerically. We find no evidence for any rapidly growing instability that could disrupt the wind during the launching and initial phase of propagation, even when the magnetic field of the magnetocentrifugal wind is toroidally dominated all the way to the launching surface. The strongly perturbed wind settles into a new steady state, with a highly asymmetric mass distribution. The distribution of magnetic field strength is, in contrast, much more symmetric. We discuss possible reasons for the apparent stability, including stabilization by an axial poloidal magnetic field, which is required to bend field lines away from the vertical direction and produce a magnetocentrifugal wind in the first place.Comment: 10 pages, 2 figures, accepted for publication in ApJ

    Sheared Flow As A Stabilizing Mechanism In Astrophysical Jets

    Full text link
    It has been hypothesized that the sustained narrowness observed in the asymptotic cylindrical region of bipolar outflows from Young Stellar Objects (YSO) indicates that these jets are magnetically collimated. The j cross B force observed in z-pinch plasmas is a possible explanation for these observations. However, z-pinch plasmas are subject to current driven instabilities (CDI). The interest in using z-pinches for controlled nuclear fusion has lead to an extensive theory of the stability of magnetically confined plasmas. Analytical, numerical, and experimental evidence from this field suggest that sheared flow in magnetized plasmas can reduce the growth rates of the sausage and kink instabilities. Here we propose the hypothesis that sheared helical flow can exert a similar stabilizing influence on CDI in YSO jets.Comment: 13 pages, 2 figure

    Cosine and Sine Operators Related with Orthogonal Polynomial Sets on the Intervall [-1,1]

    Full text link
    The quantization of phase is still an open problem. In the approach of Susskind and Glogower so called cosine and sine operators play a fundamental role. Their eigenstates in the Fock representation are related with the Chebyshev polynomials of the second kind. Here we introduce more general cosine and sine operators whose eigenfunctions in the Fock basis are related in a similar way with arbitrary orthogonal polynomial sets on the intervall [-1,1]. To each polynomial set defined in terms of a weight function there corresponds a pair of cosine and sine operators. Depending on the symmetry of the weight function we distinguish generalized or extended operators. Their eigenstates are used to define cosine and sine representations and probability distributions. We consider also the inverse arccosine and arcsine operators and use their eigenstates to define cosine-phase and sine-phase distributions, respectively. Specific, numerical and graphical results are given for the classical orthogonal polynomials and for particular Fock and coherent states.Comment: 1 tex-file (24 pages), 11 figure

    3D Relativistic Magnetohydrodynamic Simulations of Magnetized Spine-Sheath Relativistic Jets

    Get PDF
    Numerical simulations of weakly magnetized and strongly magnetized relativistic jets embedded in a weakly magnetized and strongly magnetized stationary or weakly relativistic (v = c/2) sheath have been performed. A magnetic field parallel to the flow is used in these simulations performed by the new GRMHD numerical code RAISHIN used in its RMHD configuration. In the numerical simulations the Lorentz factor Îł=2.5\gamma = 2.5 jet is precessed to break the initial equilibrium configuration. In the simulations sound speeds are â‰Čc/3\lesssim c/\sqrt 3 in the weakly magnetized simulations and â‰Č0.3c\lesssim 0.3c in the strongly magnetized simulations. The Alfven wave speed is â‰Č0.07c\lesssim 0.07c in the weakly magnetized simulations and â‰Č0.56c\lesssim 0.56c in the strongly magnetized simulations. The results of the numerical simulations are compared to theoretical predictions from a normal mode analysis of the linearized relativistic magnetohydrodynamic (RMHD) equations capable of describing a uniform axially magnetized cylindrical relativistic jet embedded in a uniform axially magnetized relativistically moving sheath. The theoretical dispersion relation allows investigation of effects associated with maximum possible sound speeds, Alfven wave speeds near light speed and relativistic sheath speeds. The prediction of increased stability of the weakly magnetized system resulting from c/2 sheath speeds and the stabilization of the strongly magnetized system resulting from c/2 sheath speeds is verified by the numerical simulation results.Comment: 31 pages, 8 figures, accepted for publicatin in ApJ. A paper with high resolution figures available at http://gammaray.nsstc.nasa.gov/~mizuno/research_new.htm
    • 

    corecore