Clusters of galaxies are the largest self-gravitating structures in the
universe. Each cluster is filled with a large-scale plasma atmosphere, in which
primordial matter is mixed with matter that has been processed inside stars.
This is a wonderful plasma physics laboratory. Our diagnostics are the data we
obtain from X-ray and radio telescopes. The thermal plasma is a strong X-ray
source; from this we determine its density and temperature. Radio data reveal a
relativistic component in the plasma, and first measurements of the
intracluster magnetic field have now been made. Energization of the particles
and the field must be related to the cosmological evolution of the cluster. The
situation is made even richer by the few galaxies in each cluster which host
radio jets. In these galaxies, electrodynamics near a massive black hole in the
core of the galaxy lead to a collimated plasma beam which propagates from the
nucleus out to supergalactic scales. These jets interact with the cluster
plasma to form the structures known as radio galaxies. The interaction disturbs
and energizes the cluster plasma. This complicates the story but also helps us
understand both the radio jets and the cluster plasma.Comment: 12 pages, 6 figures, 3 in color. Invited review, to appear in Physics
of Plasmas, May 2003. After publication it can be found at
http://ojps.aip.org/po