169 research outputs found

    A Viable Approach for Measuring the Risk-Return Relationship of IT Investments

    Get PDF
    The importance of managing the risk-return balance of information technology (IT) investments has become clearer than ever. Yet, quantitative assessment of IT investment risk and return based on financial measures remains a major challenge. Recently scholars have used event study analysis to measure the value created via IT investment, by examining the abnormal changes in shareholder wealth around the time a specific IT investment is announced. The abnormal return on equity due to such an event is considered a good proxy for the economic value of that event. In the same spirit, this research proposes estimating several forms of IT investment risk, by combining event study analysis with the use of arbitrage pricing theory. In so doing, this research contributes towards the development of an integrated approach for quantifying the risk-return relationship for IT investment so that practitioners can make more informed investment decisions

    TALENT RETENTION IN PRIVATE ENGINEERING INSTITUTIONS IN RURAL PARTS OF ANDHRA PRADESH, INDIA

    Get PDF
    It has been observed that, Talent Retention in Higher Educational Institutions is an ongoing problem in rural parts of India and Andhra Pradesh is no exception to this phenomenon. Many private higher educational institutions especially Engineering Educational Institutions in rural Andhra Pradesh are on the wedge of closure and are not in a position to sustain due to lack of revenue generation to meet even the operational expenses and with this, the existing huge and expensive infrastructure of these sick institutions are going to turn in to National Waste. This has been the burning problem for the last six to seven years due to little importance given to the most important aspect, “Talent Retention”. It is strongly believed that, institutions are made up of staff both Teaching and Non-Teaching: Teaching Staff creating value through proven teaching & Learning processes, innovation, mentorship and many other relevant activities and Non-Teaching staff providing administrative and logistic support to fulfill the needs of the deliverables of Teaching staff. As, an Educational institution strives to meet its organizational goals, it must make sure that it has a continuous and integrated process for Recruiting, Training, Managing, Supporting and Compensating these people to achieve high success rate of Talent Retention

    Deactivation and regeneration of Ni catalyst during steam reforming of model biogas: An experimental investigation

    Get PDF
    his paper presents detailed study of biogas reforming. Model biogas with different levels of H2S is subjected to reforming reaction over supported Ni catalyst in a fixed bed reactor at 700 °C and 800 °C. In order to understand the poisoning effects of H2S the reactions have been initially carried out without H2S in the feed stream. Three different H2S concentrations (20, 50 and 100 ppm) have been considered in the study. The H2O to CH4 ratio is maintained in such as way that CO2 also participates in the reforming reaction. After performing the poisoning studies, regeneration of the catalyst has been studied using three different techniques i) removal of H2S from the feed stream ii) temperature enhancement and iii) steam treatment. Poisoning at low temperature is not recoverable just by removal of H 2S from the feed stream. However, poisoning at high temperature is easily reversed just by removal of H2S from the feed stream. Unlike some previous reports by Li et al. (2010) and Rostrup-nielsen (1971) [1,2], catalyst regeneration is achieved in shorter time frames for all the regeneration techniques attempte

    Numerical study of on-board fuel reforming in a catalytic plate reactor for solid-oxide fuel cells

    Get PDF
    A pseudo-transient numerical model is used for the simulation of a multi-functional catalytic plate reactor (CPR). The work mainly addresses the problems associated with on-board reforming for solid-oxide fuel cells. Heat management is achieved by indirectly coupling partial oxidation with reforming. Water management is achieved by partially recycling the anode stream from a solid-oxide fuel cell. The model uses detailed heterogeneous chemistry for reforming and oxidation reactions occurring on the catalyst beds

    Experimental and Theoretical Investigation of Catalyst Poisoning and Regeneration During Biogas Steam Reforming on Nickel

    Get PDF
    Biogas is an important source of renewable energy produced by the anaerobic digestion of biomass. The composition of biogas depends on the biomass source and duration of the digestion process. Biogas is an ideal fuel for distributed power generation using Solid-Oxide Fuel Cells (SOFCs), especially in areas that are not grid connected. Biogas may be combusted to produce electricity or can be converted to synthesis gas by reforming over Rh or Ni catalyst. However, the presence of H2S or other sulfur containing compounds is a major problem for reforming of biogas because sulfur poisons most transition metals. The goal of this research is two fold; i) experimental investigation of catalyst deactivation and regeneration, and ii) development of a comprehensive predictive microkinetic model for biogas steam reforming on Ni based catalysts. The kinetic model is developed based on experimental data and further validated by simulating the experiments reported in the literature. The kinetic model is able to capture the performance of a fixed bed reactor used to reform model biogas with and without H2S in the feed gas. The objective of the experimental study is the deactivation and regeneration of Ni catalysts supported on γ-Al2O3 during steam reforming of biogas containing ppm levels of H2S. In order to ensure that the catalyst does not lose activity over time in a non-poisoning atmosphere (without H2S), reforming experiments are performed at 700 and 800 ◦C for 22 hrs and no loss in activity of the catalyst is observed during this period. Catalyst deactivation experiments are then performed for two different temperatures (700 and 800 ◦C) and three different H2S concentrations (20, 50, and 100 ppm). A low S/C ratio is employed to ensure the participation of CO2 in reforming reactions. Low temperature operation (700 ◦C) lead to full deactivation of the catalyst where as at higher temperature (800 ◦C) the catalyst maintained some residual activity. In certain cases, catalyst regeneration is also performed by removing H2S from the feed gas and by increasing the reforming temperature. The fully poisoned catalysts are then regenerated by steam treatment followed by reduction in H2. The regenerated catalyst is tested for its activity by performing steam reforming reaction without H2S in the feed stream. The regenerated catalyst showed stable operation for more than 13 hrs

    Pricing e-service quality risk in financial services

    Get PDF
    a b s t r a c t E-service quality is crucial for differentiating e-commerce offers and gaining competitive advantage. Eservice quality risk is the risk that a firm's e-service quality will drop, or improve, relative to competitors. There is evidence that benchmark ratings of e-service quality that are published regularly by third-parties can impact the market value of rated firms. Firms therefore continue investing in IT-related determinants of e-service quality. However, they do so without knowing: (1) the cost or return associated with a unit relative deterioration, or improvement in e-service quality ratings, and (2) how this cost or return may vary across firms. To answer these questions, we adapt a well-established financial risk pricing approach for the case of pricing a single idiosyncratic IT investment risk, where an event study is used to generate the market data needed to price ris

    A detailed kinetic model for biogas steam reforming on Ni and catalyst deactivation due to sulfur poisoning

    Get PDF
    This paper deals with the development and validation of a detailed kinetic model for steam reforming of biogas with and without H2S. The model has 68 reactions among 8 gasphase species and 18 surface adsorbed species including the catalytic surface. The activation energies for various reactions are calculated based on unity bond index-quadratic exponential potential (UBI-QEP) method. The whole mechanism is made thermodynamically consistent by using a previously published algorithm. Sensitivity analysis is carried out to understand the influence of reaction parameters on surface coverage of sulfur. The parameters describing sticking and desorption reactions of H2S are the most sensitive ones for the formation of adsorbed sulfur. The mechanism is validated in the temperature range of 873-1200 K for biogas free from H 2S and 973-1173 K for biogas containing 20-108 ppm H2S. The model predicts that during the initial stages of poisoning sulfur coverages are high near the reactor inlet; however, as the reaction proceeds further sulfur coverages increase towards the reactor exit. In the absence of sulfur, CO and elemental hydrogen are the dominant surface adsorbed species. High temperature operation can significantly mitigate sulfur adsorption and hence the saturation sulfur coverages are lower compared to low temperature operation. Low temperature operation can lead to full deactivation of the catalyst. The model predicts saturation coverages that are comparable to experimental observatio

    Micro-kinetic modeling of NH3 decomposition on Ni and its application to solid oxide fuel cells

    Get PDF
    This paper presents a detailed surface reaction mechanism for the decomposition of NH3 to H2 and N2 on a Ni surface. The mechanism is validated for temperatures ranging from 700 to 1500K and pressures from 5.3Pa to 100kPa. The activation energies for various elementary steps are calculated using the unity bond index-quadratic exponential potential (UBI-QEP) method. Sensitivity analysis is carried out to study the influence of various kinetic parameters on reaction rates. The NH3 decomposition mechanism is used to simulate SOFC button cell operating on NH3 fuel
    corecore