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Abstract  31 

Islet transplantation is a treatment for selected adults with Type 1 diabetes and severe 32 

hypoglycemia. Islets from two or more donor pancreases, a scarce resource, are usually 33 

required to impact on glycemic control but the treatment falls short of a cure. Islets are 34 

avascular when transplanted into the hypoxic liver environment and subjected to 35 

inflammatory insults, immune attack and toxicity from systemic immunosuppression. The 36 

Collaborative Islet Transplant Registry with outcome data on over 1000 islet transplant 37 

recipients has demonstrated that larger islet numbers transplanted and older age of recipient 38 

are associated with better outcomes. Induction with T cell depleting agents and the TNF-α 39 

inhibitor Etanercept and maintenance systemic immunosuppression with mTOR inhibitors in 40 

combination with calcineurin inhibitors also appear advantageous, but concerns remain over 41 

immunosuppressive toxicity.  We discuss strategies and therapeutics which address specific 42 

challenges of islet transplantation, many of which are at the pre-clinical stage of 43 

development. On the horizon are adjuvant cell therapies with mesenchymal stromal cells 44 

and regulatory T cells that have been used in preclinical models and in humans in other 45 

contexts; such a strategy may enable reductions in immunosuppression in the early peri-46 

transplant period when the islets are vulnerable to apoptosis. Human embryonic stem-cell 47 

derived islets are in early phase clinical trials and hold the promise of an inexhaustible 48 

supply of insulin producing cells; effective encapsulation of such cells or, silencing of the 49 

HLA complex would eliminate the need for immunosuppression, enabling this therapy to be 50 

used in all those with Type 1 diabetes. 51 

  52 
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Introduction  53 

Diabetes affects over 422 million people worldwide, has an adult prevalence of 8.5% and is 54 

the fastest increasing chronic disease with substantial economic impact [1, 2]. Type 1 55 

diabetes (T1D) is an autoimmune condition characterised by the absence or near absence of 56 

circulating C-peptide and affects up to 15% of the diabetic population [3]. People with the 57 

condition are reliant on exogenous insulin therapy but complications of insulin treatment 58 

include severe hypoglycemia (SH) [4, 5]. SH, defined as a low blood glucose requiring 59 

external assistance associated with a blood glucose value < 70mg/dL (3.9mmol/L) [5, 6], 60 

occurs in 35-42% of T1D patients with a rate of between 90-130 episodes/100 patient years 61 

[7]. Repeated episodes of hypoglycemia leads to impairment of the counter-regulatory 62 

system with the potential for the development of hypoglycemia unawareness [8, 9]. Despite 63 

advances in technology which can have profound benefits for subgroups of patients 64 

particularly in the current era of continuous glucose monitoring systems and hybrid closed-65 

loop systems, overall the prevalence of SH in people with T1D remains unchanged [10]. 66 

 67 

Islet transplantation, history, indications and outcomes 68 

Allogeneic islet transplantation whereby islets are isolated from a donor pancreas and 69 

transplanted most commonly into a recipient with T1D, is a clinically proven intervention for 70 

T1D associated with recurrent SH. This can eliminate exogenous insulin injections, stabilise 71 

blood glucose control, prevent or diminish hypoglycemia, restore symptoms of hypoglycemia 72 

and halt the progression of T1D related complications [4, 11-14]. The history of islet 73 

transplantation and main clinical trials are outlined in Figure 1 [13, 15-35]. Insulin 74 

independence is not a primary aim and 5 year insulin independence rates are < 50%, with 75 

attrition in islet function seen over time in the majority [36]. Nevertheless, minimal graft 76 

function protects against hypoglycemia [37-39]. Islet transplantation is associated with a 77 

reduction in the progression of microvascular complications, including neuropathy and 78 
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retinopathy [4, 40, 41]. Effects on nephropathy may be complicated by coexisting kidney 79 

transplantation and the impact of immunosuppression, the latter leading to an early decline 80 

in renal function; however, there is evidence to suggest renal outcomes stabilise in the long 81 

term [4]. Short-term studies have demonstrated a positive impact of islet cell transplantation 82 

on surrogate markers of macrovascular disease but this has not been examined in 83 

randomised controlled trials [4, 40]. This minimally invasive procedure has an excellent 84 

safety profile which may be considered in patients with co-morbidities that would not be fit 85 

enough to undergo the major intra-abdominal surgery involved in pancreas transplantation 86 

[42-44].  87 

The first randomised controlled trial in islet transplantation demonstrated superior metabolic 88 

endpoints with improved hypoglycemic awareness versus insulin therapy and also improved 89 

quality-of-life [1, 34]. The requirement for immunosuppression is the main consideration and 90 

the increased risk of infections [45], nephrotoxicity [46] and the x4 fold risk of cancer [36], 91 

limits patient selection to those age ≥18<65 years without a history of cancer.  92 

 93 

Challenges in islet transplantation  94 

Multiple challenges exist in islet transplantation as demonstrated in Figure 2 [47-67] and the 95 

procedure currently falls short of a cure for T1D. A donor pancreas contains approximately 1 96 

million islets but following digestion, purification and culture of islets, <50% of this number 97 

are isolated [68-70]. 98 

Islets are avascular when transplanted into the liver and susceptible to apoptosis in the liver 99 

in the first few days peri-transplant [71, 72]. Following transplantation, islets are subject to 100 

oxidative stress, inflammation, including the instant blood mediated inflammatory reaction 101 

(IBMIR) and rejection from alloimmune and autoimmune mechanisms [70] and <60% of 102 

transplanted islets successfully engraft into the liver [73]. Angiogenesis commences at day 3 103 

post-transplant and takes approximately four weeks to complete. Attrition in graft function is 104 
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seen post-transplant but is incompletely understood [32, 36, 70, 74-77].  The liver is a 105 

tolerogenic organ and one of the only sites where transplanted islets have been associated 106 

with insulin independence [78, 79]. Typically, islets from ≥2 donor pancreases given as 107 

sequential infusions are required to impact glycemic control however successful single graft 108 

islet transplantation is seen [36] and has been reported in a number of single centres [80, 109 

81] as well as in the Collaborative Islet Transplant Registry (CITR) [36].  A recent study in 110 

islet transplant recipients receiving two versus one islet graft demonstrated that despite 111 

transplant recipients of two grafts receiving 1.9 times the number of islets compared to single 112 

graft recipients (median(IQR) 12,218(9,291-15,417) versus 6,442(5,156-7,639) IEQ/kg; 113 

p<0.0001), 90 minute C-peptide concentrations following a mixed meal tolerance test at 1 114 

year post first transplant, were not significantly different [80]. Furthermore, the numbers of 115 

islets received in the first graft were associated with graft function in those receiving one and 116 

two grafts [80]. This result although requiring confirmation, highlights the importance of the 117 

first transplant and many programs aim to deliver high numbers of islets with the first islet 118 

infusion.  119 

Islet transplant programs have pooled their data and the CITR has allowed meaningful 120 

interpretation of transplant outcomes. This registry (latest CITR – 2015, 10th annual report 121 

[36]) consists of outcome data from 1086 patients world-wide that have undergone islet 122 

allotransplantation. Donor and recipient selection meet strict criteria [48] as do release 123 

criteria of islets for transplant, which include sterility standards, numbers isolated (≥5,000 124 

IEQ/kg), purity ≥30% and viability ≥70% [82]. Induction and immunosuppression regimens 125 

differ from centre to centre and over time, which has allowed an understanding of the impact 126 

of these factors on islet transplant outcomes.   127 

Factors associated with islet transplant outcomes are discussed and therapies that may 128 

address challenges in islet transplantation are highlighted and shown in Figure 2.  129 

 130 
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Factors known to influence islet transplant outcomes  131 

Islet numbers: Islet numbers ≥325,000 islet equivalent units (IEQs) and >10,000 IEQs per 132 

kilogram recipient body weight are associated with insulin independence [83] although 133 

results differ from centre to centre [84]. Islet mass at first transplant appears critical [14, 84] 134 

and some programs aim for greater first islet transplant mass [14]. A time interval of >6 135 

months between the first and second transplant may negatively impact on transplant 136 

outcomes [84]; donor specific antibody mediated rejection may play a role but has not been 137 

conclusively shown [84].  138 

Age of recipient: recipient age ≥35 years are associated with better outcomes likely related 139 

to diminished autoimmune attack of transplanted β-cells [85]. Studies have demonstrated a 140 

negative correlation between increasing age and islet cell autoantibody positive status in 141 

Type 1 diabetes, consistent with this observation [84]. The mean(SD) age of people 142 

receiving islet allografts in the CITR is 46(±10.5) years [36]. 143 

Continuation of insulin therapy post-transplantation: in the Edmonton protocol published in 144 

2000, insulin therapy post-transplant was withheld unless serum glucose concentrations 145 

exceeded 11.1 mmol/L, at which stage another islet transplant was undertaken [13]. 146 

Currently, in order to in theory limit the stress on the transplanted islets, insulin therapy is 147 

now reinstated following islet transplant until satisfactory glucose control is observed [86]. 148 

However, controlled trials in humans in this area demonstrating the benefits on islet survival 149 

post transplantation are lacking but nevertheless the administration of insulin to control 150 

glucose concentrations is pragmatic and overall beneficial.   151 

Induction with T-cell depletion and/or TNF-α inhibition: induction with the anti-CD52 antibody 152 

alemtuzumab that targets mature lymphocytes is associated with lymphopenia and a 153 

decrease in de novo antibody formation post allotransplant [75] and this, in combination with 154 

the TNF-α inhibitor Etanercept, is associated with positive long-term graft outcomes. Anti-155 

thymocyte globulin (ATG), is also associated with improved graft function [55]. Anti-CD3 156 
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agents block T cell differentiation and proliferation, induce regulatory T cells [87] and have 157 

recently been shown to preserve C-peptide concentrations in those with newly diagnosed 158 

type 1 diabetes [88]  and are currently being utilised in early clinical trials in islet 159 

transplantation.   160 

Mammalian target of rapamycin (mTOR) inhibition in combination with calcineurin inhibitors 161 

(CNI):  mTOR inhibitors such as sirolimus were used in the original Edmonton protocol and 162 

were thought to have decreased renal toxicity and diabetogenic effects [13, 89]. When 163 

combined with CNIs such as tacrolimus, an agent that impairs transcription of (IL)-2 and 164 

several other cytokines in T lymphocytes, mTOR inhibitors are associated with positive islet 165 

graft outcome measures. mTOR inhibitors are now less commonly used: previously 86.9 % 166 

in 1999 to 2002 to 59 % in 2011 to 2014 to no reported use in 2015-2018 [90]. This 167 

decrease is due to less well-tolerated side effects without the advantage of better outcomes 168 

[89]. The most common immunosuppression now is mycophenolate mofetil (MMF), an 169 

inhibitor of inosine-5'-monophosphate dehydrogenase leading to inhibition of proliferation of 170 

T and B lymphocytes, with suppression of cell-mediated immune responses and antibody 171 

formation in combination with CNIs. Adverse effects of tacrolimus include insulin resistance 172 

and renal dysfunction, which are ameliorated with dose reductions but  β-cell mediated 173 

toxicity is a concern [4] and alternative immunosuppressive agents hold promise.  174 

 175 

Therapies in early clinical trials and on the horizon 176 

Human embryonic stem cell (hESC) derived islets are in early phase 1/2 clinical trials and 177 

this may lead to an inexhaustible supply of islets which could transform the field [91] 178 

although tumorigenicity, while unlikely, is a concern [92]. Encapsulation of hESC islets could 179 

eliminate the need for immunosuppression [93, 94], as could HLA silencing [66, 95-99], both 180 

of which would enable children to be treated. Transplantation of hESC islets in a device in 181 

the subcutaneous space is theoretically advantageous but in practice has been difficult due 182 
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to scar formation around the site limiting the release of insulin [100]. Alternative strategies 183 

[101] and exploitation of specific biomaterials in the subcutaneous site are a focus of 184 

research [60], as are human induced pluripotent stem cell (hIPSC) [99] and xenogeneic 185 

sources of islets [50, 60]. Bioscaffolds are becoming increasingly investigated as a potential 186 

aid to islet engraftment – for example, dexamethasone-loaded microplate enriched collagen 187 

coated polydimethylsiloxane scaffolds enhance islet function and prolong graft survival [102]. 188 

The manipulation of self-reactive T-cells to delete the responsiveness to self, known as 189 

tolerance, is also being investigated [103].  190 

Most adjuvant therapies that may improve human islet transplant outcomes are at the 191 

preclinical phase of development. Cellular therapies including mesenchymal stem cells 192 

(MSCs) as well as their products [104] hold particular promise as they have already been 193 

used in humans for other conditions [105]. MSCs are pro-regenerative, anti-inflammatory 194 

and immunomodulatory [67] enabling in theory a reduction in the dose of 195 

immunosuppression [104]. Autologous bone marrow derived MSCs transplanted in people 196 

with new onset T1D where there are remaining β-cells with detectable C-peptide, shows that 197 

C-peptide concentrations are preserved to a greater degree than when MSCs are not given 198 

[106]. Meta-analyses of islet transplant outcomes in humans have shown that less pure islet 199 

preparations, where there are conceivably more pancreatic MSCs, are associated with better 200 

islet graft function [107]. Other cellular therapies including regulatory T cells may also hold 201 

promise as a co-therapy for islet transplantation due to their pro-regenerative, anti-202 

inflammatory and immunomodulatory properties and have been given in man [108].  203 

Modulation of the liver niche with growth factors [109] and anti-inflammatory agents [110] 204 

have been used with some success and polymer properties may be exploited to regulate 205 

release of such factors when islets are immediately transplanted and particularly vulnerable 206 

to apoptosis [109, 111], but these are still at a very early pre-clinical stage. Accelerating the 207 

vascularisation of transplanted islets with a number of approaches including gene therapy 208 
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methods [112] may be a relevant strategy to accelerate islet engraftment and may improve 209 

transplantation outcomes.  210 

 211 

Conclusions 212 

Islet transplantation stabilises glycemic control, reduces hypoglycemia and restores 213 

hypoglycemic awareness. However long term insulin independence rates are low. Despite its 214 

success, major factors limit the application of islet transplantation including scarcity of 215 

appropriate organ donors, poor islet engraftment rates, long-term deterioration in islet 216 

function, and formation of allo- and auto-antibodies in patients receiving multiple grafts. The 217 

use of immunosuppression is associated with an increased risk of cancer and infections and 218 

limits the procedure to selected adult patients. Since no replenishable source of islets or β-219 

cells exists for routine clinical use the best use of donated pancreases is imperative; 220 

adjuvant cellular therapies have shown benefit in pre-clinical studies and these co-therapies 221 

are on the horizon. Other more experimental techniques targeting the liver niche hold 222 

promise. The field of islet transplantation may be transformed by the use of hESC islets, 223 

already in early stage clinical trials, which would enable more people to be treated to achieve 224 

insulin independence. The use of these islets as well as other alternative sources of islets 225 

with no requirement for immunosuppression would open up the possibility of islet 226 

transplantation for all with T1D including children. 227 
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Figure 1. Timeline of important developments and clinical trials in islet 517 

transplantation. 518 

The timeline of significant studies, developments and clinical trials in islet transplantation are 519 

shown.  520 

 521 

Figure 2. The challenges and potential future therapies for islet transplantation. 522 

The main challenges of islet transplantation are demonstrated along with potential future 523 

solutions. Such solutions include expanding the source of insulin producing cells to meet 524 

demand, reducing inflammation post islet transplantation using pharmacotherapies and cell 525 

therapies, using alternative immunosuppression and eliminating the need for 526 

immunosuppression by using biomaterials and HLA silencing. 527 
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- Immunomodulatory cells: 
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