8 research outputs found

    Effect of the electron transport layer on the interfacial energy barriers and lifetime of R2R printed organic solar cell modules

    No full text
    Abstract Understanding the phenomena at interfaces is crucial for producing efficient and stable flexible organic solar cell modules. Minimized energy barriers enable efficient charge transfer, and good adhesion allows mechanical and environmental stability and thus increased lifetime. We utilize here the inverted organic solar module stack and standard photoactive materials (a blend of poly(3-hexylthiophene) and [6,6]-phenyl C61 butyric acid methyl ester) to study the interfaces in a pilot scale large-area roll-to-roll (R2R) process. The results show that the adhesion and work function of the zinc oxide nanoparticle based electron transport layer can be controlled in the R2R process, which allows optimization of performance and lifetime. Plasma treatment of zinc oxide (ZnO) nanoparticles and encapsulation-induced oxygen trapping will increase the absolute value of the ZnO work function, resulting in energy barriers and an S-shaped IV curve. However, light soaking will decrease the zinc oxide work function close to the original value and the S-shape can be recovered, leading to power conversion efficiencies above 3%. We present also an electrical simulation, which supports the results. Finally, we study the effect of plasma treatment in more detail and show that we can effectively remove the organic ligands around the ZnO nanoparticles from the printed layer in a R2R process, resulting in increased adhesion. This postprinting plasma treatment increases the lifetime of the R2R printed modules significantly with modules retaining 80% of their efficiency for ∌3000 h in accelerated conditions. Without plasma treatment, this efficiency level is reached in less than 1000 h

    Behaviour of one-step spray-coated carbon nanotube supercapacitor in ambient light harvester circuit with printed organic solar cell and electrochromic display

    Get PDF
    A printed energy harvesting and storage circuit powered by ambient office lighting and its use to power a printed display is reported. The autonomous device is composed of three printed electronic components: an organic photovoltaic module, a carbon-nanotubes-only supercapacitor and an electrochromic display element. Components are fabricated from safe and environmentally friendly materials, and have been fabricated using solution processing methods, which translate into low-cost and high-throughput manufacturing. A supercapacitor made of spray-coated carbon nanotube based ink and aqueous NaCl electrolyte was charged using a printed organic photovoltaic module exposed to office lighting conditions. The supercapacitor charging rate, self-discharge rate and display operation were studied in detail. The supercapacitor self-discharge rate was found to depend on the charging rate. The fully charged supercapacitor was used as a power source to run the electrochromic display over 50 times
    corecore