3,740 research outputs found

    An Administrative Meter Maid: Using Inter Partes Review and Post-Grant Review to Curb Exclusivity Parking via the Failure to Market Provision of the Hatch-Waxman Act

    Get PDF
    Congress created the unique Hatch-Waxman framework in 1984 to increase the availability of low-cost generic drugs while preserving patent incentives for new drug development. The Hatch-Waxman Act rewards generic drug companies that successfully challenge a pharmaceutical patent: 180 days of market exclusivity before any other generic firm can enter the market. When a generic firm obtains this reward, sometimes drug developers agree to pay generic firms to delay entering the market. These pay-for-delay agreements give rise to exclusivity parking and run counter to congressional intent by delaying full generic drug competition. The Medicare Prescription Drug, Improvement, and Modernization Act created several statutory forfeiture provisions that proved only marginally effective at curbing the practice of exclusivity parking. More recently, Congress created new quasi-judicial administrative proceedings that effectively replace certain kinds of district court patent litigation. This Note describes the complex statutory scheme that gave rise to exclusivity parking, explains why previous and current attempts to curtail exclusivity parking were and remain ineffective, and suggests amending the “failure to market” provision to include these new administrative proceedings as a way to help curb exclusivity parking

    Heisenberg antiferromagnet with anisotropic exchange on the Kagome lattice: Description of the magnetic properties of volborthite

    Full text link
    We study the properties of the Heisenberg antiferromagnet with spatially anisotropic nearest-neighbour exchange couplings on the kagome net, i.e. with coupling J in one lattice direction and couplings J' along the other two directions. For J/J' > 1, this model is believed to describe the magnetic properties of the mineral volborthite. In the classical limit, it exhibits two kinds of ground states: a ferrimagnetic state for J/J' < 1/2 and a large manifold of canted spin states for J/J' > 1/2. To include quantum effects self-consistently, we investigate the Sp(N) symmetric generalisation of the original SU(2) symmetric model in the large-N limit. In addition to the dependence on the anisotropy, the Sp(N) symmetric model depends on a parameter kappa that measures the importance of quantum effects. Our numerical calculations reveal that in the kappa-J/J' plane, the system shows a rich phase diagram containing a ferrimagnetic phase, an incommensurate phase, and a decoupled chain phase, the latter two with short- and long-range order. We corroborate these results by showing that the boundaries between the various phases and several other features of the Sp(N) phase diagram can be determined by analytical calculations. Finally, the application of a block-spin perturbation expansion to the trimerised version of the original spin-1/2 model leads us to suggest that in the limit of strong anisotropy, J/J' >> 1, the ground state of the original model is a collinearly ordered antiferromagnet, which is separated from the incommensurate state by a quantum phase transition.Comment: 21 pages, 22 figures. Final version, PRB in pres

    Spatially anisotropic Heisenberg Kagome antiferromagnet

    Full text link
    In the search for spin-1/2 kagome antiferromagnets, the mineral volborthite has recently been the subject of experimental studies [Hiroi et al.,2001]. It has been suggested that the magnetic properties of this material are described by a spin-1/2 Heisenberg model on the kagome lattice with spatially anisotropic exchange couplings. We report on investigations of the Sp(N) symmetric generalisation of this model in the large N limit. We obtain a detailed description of the dependence of possible ground states on the anisotropy and on the spin length S. A fairly rich phase diagram with a ferrimagnetic phase, incommensurate phases with and without long range order and a decoupled chain phase emerges.Comment: 6 pages, 6 figures, proceedings of the HFM2006 conference, to appear in a special issue of J. Phys.: Condens. Matte

    Renormalization-group analysis of the one-dimensional extended Hubbard model with a single impurity

    Full text link
    We analyze the one-dimensional extended Hubbard model with a single static impurity by using a computational technique based on the functional renormalization group. This extends previous work for spinless fermions to spin-1/2 fermions. The underlying approximations are devised for weak interactions and arbitrary impurity strengths, and have been checked by comparing with density-matrix renormalization-group data. We present results for the density of states, the density profile and the linear conductance. Two-particle backscattering leads to striking effects, which are not captured if the bulk system is approximated by its low-energy fixed point, the Luttinger model. In particular, the expected decrease of spectral weight near the impurity and of the conductance at low energy scales is often preceded by a pronounced increase, and the asymptotic power laws are modified by logarithmic corrections.Comment: 36 pages, 13 figures, revised version as publishe

    Disorder Effects in Fluctuating One-Dimensional Interacting Systems

    Full text link
    The zero temperature localization of interacting electrons coupled to a two-dimensional quenched random potential, and constrained to move on a fluctuating one-dimensional string embedded in the disordered plane, is studied using a perturbative renormalization group approach. In the reference frame of the electrons the impurities are dynamical and their localizing effect is expected to decrease. We consider several models for the string dynamics and find that while the extent of the delocalized regime indeed grows with the degree of string fluctuations, the critical interaction strength, which determines the localization-delocalization transition for infinitesimal disorder,does not change unless the fluctuations are softer than those of a simple elastic string.Comment: 15 page

    Heat conduction and Wiedemann-Franz Law in disordered Luttinger Liquids

    Full text link
    We consider heat transport in a Luttinger liquid (LL) with weak disorder and study the Lorenz number for this system. We start at a high-TT regime, and calculate both the electrical and thermal conductivities using a memory function approach. The resulting Lorenz number LL is independent of TT but depends explicitly on the LL exponents. Lowering TT, however, allows for a renormalization of the LL exponents from their bare values by disorder, causing a violation of the Wiedemann-Franz law. Finally, we extend the discussion to quantum wire systems and study the wire size dependence of the Lorenz number.Comment: 4 pages, 1 eps figure; Changes made to address Referees' comment

    Emissions of Volatile Organic Compounds Inferred From Airborne Flux Measurements over a Megacity

    Get PDF
    Toluene and benzene are used for assessing the ability to measure disjunct eddy covariance (DEC) fluxes of Volatile Organic Compounds (VOC) using Proton Transfer Reaction Mass Spectrometry (PTR-MS) on aircraft. Statistically significant correlation between vertical wind speed and mixing ratios suggests that airborne VOC eddy covariance (EC) flux measurements using PTR-MS are feasible. City-median midday toluene and benzene fluxes are calculated to be on the order of 14.1&amp;plusmn;4.0 mg/m&lt;sup&gt;2&lt;/sup&gt;/h and 4.7&amp;plusmn;2.3 mg/m&lt;sup&gt;2&lt;/sup&gt;/h, respectively. For comparison the adjusted CAM2004 emission inventory estimates toluene fluxes of 10 mg/m&lt;sup&gt;2&lt;/sup&gt;/h along the footprint of the flight-track. Wavelet analysis of instantaneous toluene and benzene measurements during city overpasses is tested as a tool to assess surface emission heterogeneity. High toluene to benzene flux ratios above an industrial district (e.g. 10–15 g/g) including the International airport (e.g. 3–5 g/g) and a mean flux (concentration) ratio of 3.2&amp;plusmn;0.5 g/g (3.9&amp;plusmn;0.3 g/g) across Mexico City indicate that evaporative fuel and industrial emissions play an important role for the prevalence of aromatic compounds. Based on a tracer model, which was constrained by BTEX (BTEX– Benzene/Toluene/Ethylbenzene/m, p, o-Xylenes) compound concentration ratios, the fuel marker methyl-tertiary-butyl-ether (MTBE) and the biomass burning marker acetonitrile (CH&lt;sub&gt;3&lt;/sub&gt;CN), we show that a combination of industrial, evaporative fuel, and exhaust emissions account for &gt;87% of all BTEX sources. Our observations suggest that biomass burning emissions play a minor role for the abundance of BTEX compounds in the MCMA (2–13%)

    Delocalization in Coupled Luttinger Liquids with Impurities

    Full text link
    We study effects of quenched disorder on coupled two-dimensional arrays of Luttinger liquids (LL) as a model for stripes in high-T_c compounds. In the framework of a renormalization-group analysis, we find that weak inter-LL charge-density-wave couplings are always irrelevant as opposed to the pure system. By varying either disorder strength, intra- or inter-LL interactions, the system can undergo a delocalization transition between an insulator and a novel strongly anisotropic metallic state with LL-like transport. This state is characterized by short-ranged charge-density-wave order, the superconducting order is quasi long-ranged along the stripes and short-ranged in the transversal direction.Comment: 6 pages, 5 figures, substantially extended and revised versio

    Dynamics of a large spin with weak dissipation

    Full text link
    We investigate the generalization of the spin-boson model to arbitrary spin size. The Born-Markov approximation is employed to derive a master equation in the regime of small coupling strengths to the environment. For spin one half, the master equation transforms into a set of Bloch equations, the solution of which is in good agreement with results of the spin-boson model for weak ohmic dissipation. For larger spins, we find a superradiance-like behavior known from the Dicke model. The influence of the nonresonant bosons of the dissipative environment can lead to the formation of a beat pattern in the dynamics of the zz-component of the spin. The beat frequency is approximately proportional to the cutoff ωc\omega_c of the spectral function.Comment: 11 pages, 3 figures, to appear in Chemical Physics Special Issue on the Spin-Boson Problem, ed. by H. Grabert and A. Nitza

    Monte Carlo Simulation of the Heisenberg Antiferromagnet on a Triangular Lattice: Topological Excitations

    Full text link
    We have simulated the classical Heisenberg antiferromagnet on a triangular lattice using a local Monte Carlo algorithm. The behavior of the correlation length Ο\xi, the susceptibility at the ordering wavevector χ(Q)\chi(\bf Q), and the spin stiffness ρ\rho clearly reflects the existence of two temperature regimes -- a high temperature regime T>TthT > T_{th}, in which the disordering effect of vortices is dominant, and a low temperature regime T<TthT < T_{th}, where correlations are controlled by small amplitude spin fluctuations. As has previously been shown, in the last regime, the behavior of the above quantities agrees well with the predictions of a renormalization group treatment of the appropriate nonlinear sigma model. For T>TthT > T_{th}, a satisfactory fit of the data is achieved, if the temperature dependence of Ο\xi and χ(Q)\chi(\bf Q) is assumed to be of the form predicted by the Kosterlitz--Thouless theory. Surprisingly, the crossover between the two regimes appears to happen in a very narrow temperature interval around Tth≃0.28T_{th} \simeq 0.28.Comment: 13 pages, 8 Postscript figure
    • 

    corecore