We analyze the one-dimensional extended Hubbard model with a single static
impurity by using a computational technique based on the functional
renormalization group. This extends previous work for spinless fermions to
spin-1/2 fermions. The underlying approximations are devised for weak
interactions and arbitrary impurity strengths, and have been checked by
comparing with density-matrix renormalization-group data. We present results
for the density of states, the density profile and the linear conductance.
Two-particle backscattering leads to striking effects, which are not captured
if the bulk system is approximated by its low-energy fixed point, the Luttinger
model. In particular, the expected decrease of spectral weight near the
impurity and of the conductance at low energy scales is often preceded by a
pronounced increase, and the asymptotic power laws are modified by logarithmic
corrections.Comment: 36 pages, 13 figures, revised version as publishe