33 research outputs found

    Impacts of human activity and global changes on future morphodynamics within the tien river, vietnamese mekong delta

    Get PDF
    The hydro-and morphodynamic processes within the Vietnamese Mekong Delta are heavily impacted by human activity, which in turn affects the livelihood of millions of people. The main drivers that could impact future developments within the delta are local stressors like hydropower development and sand mining, but also global challenges like climate change and relative sea level rise. Within this study, a hydro-morphodynamic model was developed, which focused on a stretch of the Tien River and was nested into a well-calibrated model of the delta's hydrodynamics. Multiple scenarios were developed in order to assess the projected impacts of the different drivers on the river's morphodynamics. Simulations were carried out for a baseline scenario (2000-2010) and for a set of plausible scenarios for a future period (2050-2060). The results for the baseline scenario indicate that the Tien River is already subject to substantial erosion under present-day conditions. For the future period, hydropower development has the highest impact on the local erosion and deposition budget, thus amplifying erosional processes, followed by an increase in sand mining activity and climate change-related variations in discharge. The results also indicate that relative sea level rise only has a minimal impact on the local morphodynamics of this river stretch, while erosional tendencies are slowed by a complete prohibition of sand mining activity. In the future, an unfavourable combination of drivers could increase the local imbalance between erosion and deposition by up to 89%, while the bed level could be incised by an additional 146%. © 2020 by the authors

    Sand mining in the Mekong Delta revisited - current scales of local sediment deficits

    Get PDF
    The delta of the Mekong River in Vietnam has been heavily impacted by anthropogenic stresses in recent years, such as upstream dam construction and sand mining within the main and distributary channels, leading to riverbank and coastal erosion. Intensive bathymetric surveys, conducted within the Tien River branch during the dry and wet season 2018, reveal a high magnitude of sand mining activities. For the year 2018, an analysis of bathymetric maps and the local refilling processes leads to an estimated sand extraction volume of 4.64 ± 0.31 Mm3/yr in the study area, which covered around 20 km. Reported statistics of sand mining for all of the Mekong’s channels within the delta, which have a cumulative length of several hundred kilometres, are 17.77 Mm3/yr for this period. Results from this study highlight that these statistics are likely too conservative. It is also shown that natural sediment supplies from upper reaches of the Mekong are insufficient to compensate for the loss of extracted bed aggregates, illustrating the non-sustainable nature of the local sand mining practices

    Adaptation to flood risk: Results of international paired flood event studies

    Get PDF
    As flood impacts are increasing in large parts of the world, understanding the primary drivers of changes in risk is essential for effective adaptation. To gain more knowledge on the basis of empirical case studies, we analyze eight paired floods, that is, consecutive flood events that occurred in the same region, with the second flood causing significantly lower damage. These success stories of risk reduction were selected across different socioeconomic and hydro-climatic contexts. The potential of societies to adapt is uncovered by describing triggered societal changes, as well as formal measures and spontaneous processes that reduced flood risk. This novel approach has the potential to build the basis for an international data collection and analysis effort to better understand and attribute changes in risk due to hydrological extremes in the framework of the IAHSs Panta Rhei initiative. Across all case studies, we find that lower damage caused by the second event was mainly due to significant reductions in vulnerability, for example, via raised risk awareness, preparedness, and improvements of organizational emergency management. Thus, vulnerability reduction plays an essential role for successful adaptation. Our work shows that there is a high potential to adapt, but there remains the challenge to stimulate measures that reduce vulnerability and risk in periods in which extreme events do not occur

    Adaptation to flood risk - results of international paired flood event studies

    Get PDF
    As flood impacts are increasing in large parts of the world, understanding the primary drivers of changes in risk is essential for effective adaptation. To gain more knowledge on the basis of empirical case studies, we analyze eight paired floods, that is, consecutive flood events that occurred in the same region, with the second flood causing significantly lower damage. These success stories of risk reduction were selected across different socioeconomic and hydro‐climatic contexts. The potential of societies to adapt is uncovered by describing triggered societal changes, as well as formal measures and spontaneous processes that reduced flood risk. This novel approach has the potential to build the basis for an international data collection and analysis effort to better understand and attribute changes in risk due to hydrological extremes in the framework of the IAHSs Panta Rhei initiative. Across all case studies, we find that lower damage caused by the second event was mainly due to significant reductions in vulnerability, for example, via raised risk awareness, preparedness, and improvements of organizational emergency management. Thus, vulnerability reduction plays an essential role for successful adaptation. Our work shows that there is a high potential to adapt, but there remains the challenge to stimulate measures that reduce vulnerability and risk in periods in which extreme events do not occur

    Regulation of the rabbit's once-daily pattern of nursing : A circadian or hourglass-dependent process?

    No full text
    The European rabbitOryctolagus cuniculushas an unusual pattern of nursing behavior. After giving birth in a nursery burrow (or laboratory nest box), the mother immediately leaves the young and only returns to nurse for a few minutes once approximately every 24 h. It has been assumed this schedule, like a variety of other functions in the rabbit, is under circadian control. This assumption has been largely based on findings from mothers only permitted restricted access to their young once every 24 h. However, in nature and in the laboratory, mothers with free access to young show nursing visits with a periodicity shorter than 24 h, that does not correspond to other behavioral and physiological rhythms entrained to the prevailing 24 h light/dark (LD) cycle. To investigate how this unusual, apparently non-circadian pattern might be regulated, we conducted two experiments using female Dutch-belted rabbits housed individually in cages designed to automatically register feeding activity and nest box visits. In Experiment 1 we recorded the behavior of 17 mothers with free access to their young under five different LD cycles with long photo and short scotoperiods, spanning the limits of entrainment of the rabbit's circadian system. Whereas feeding rhythms were entrained by LD cycles within the rabbit's circadian range of entrainment, nursing visits showed a consistently shorter periodicity regardless of the LD regimen, largely independent of the circadian system. In Experiment 2 we tested further 12 mothers under more conventional LD 16:8 cycles but "trained" by having access to the nest box restricted to 1 h at the same time each day for the first 7 d of nursing. Mothers were then allowed free access either when their young were left in the box (n= 6), or when the litter had been permanently removed (n= 6). Mothers with pups still present returned to nurse them on the following days according to a similarly advancing pattern to the mothers of Experiment 1 despite the previous 7 d of "training" to an experimentally enforced 24 h nursing schedule as commonly used in previous studies of rabbit maternal behavior. Mothers whose pups had been removed entered the box repeatedly several times on the first day of unrestricted access, but on subsequent days did so only rarely, and at times of day apparently unrelated to the previously scheduled access. We conclude that the pattern of the rabbit's once-daily nursing visits has a periodicity largely independent of the circadian system, and that this is reset at each nursing. When nursing fails to occur nest box visits cease abruptly, with mothers making few or no subsequent visits. Together, these findings suggest that the rabbit's once-daily pattern of nursing is regulated by an hourglass-type process with a period less than 24 h that is reset at each nursing, rather than by a circadian oscillator. Such a mechanism might be particularly adaptive for rhythms of short duration that should end abruptly with a sudden change in context such as death or weaning of the young.This work was supported by the Australian Federal Government via a Postgraduate PhD Scholarship for Sabibe Apel [APA SA 1]

    Technical Note:Resolution enhancement of flood inundation grids

    No full text
    High-resolution flood maps are needed for more effective flood risk assessment and management. Producing these directly with hydrodynamic models is slow and computationally prohibitive at large scales. Here we demonstrate a new algorithm for post-processing low-resolution inundation layers by using high-resolution terrain models to disaggregate or downscale. The new algorithm is roughly 8 times faster than state-of-The-Art algorithms and shows a slight improvement in accuracy when evaluated against observations of a recent flood using standard performance metrics. Qualitatively, the algorithm generates more physically coherent flood maps in some hydraulically challenging regions compared to the state of the art. The algorithm developed here is open source and can be applied in conjunction with a low-resolution hydrodynamic model and a high-resolution DEM to rapidly produce high-resolution inundation maps. For example, in our case study with a river reach of 20 km, the proposed algorithm generated a 4 m resolution inundation map from 32 m hydrodynamic model outputs in 33 s compared to a 4 m hydrodynamic model runtime of 34 min. This 60-fold improvement in runtime is associated with a 25 % increase in RMSE when compared against the 4 m hydrodynamic model results and observations of a recent flood. Substituting downscaling into flood risk model chains for high-resolution modelling has the potential to drastically improve the efficiency of inundation map production and increase the lead time of impact-based forecasts, helping more at-risk communities prepare for and mitigate flood damages.</p
    corecore